425 research outputs found

    Treatment of pernicious anemia

    Get PDF

    Downstream Approaches to Phosphorus Management in Agricultural Landscapes: Regional Applicability and Use

    Get PDF
    This review provides a critical overview of conservation practices that are aimed at improving water quality by retaining phosphorus (P) downstream of runoff genesis. The review is structured around specific downstream practices that are prevalent in various parts of the United States. Specific practices that we discuss include the use of controlled drainage, chemical treatment of waters and soils, receiving ditch management, and wetlands. The review also focuses on the specific hydrology and biogeochemistry associated with each of those practices. The practices are structured sequentially along flowpaths as you move through the landscape, from the edge-of-field, to adjacent aquatic systems, and ultimately to downstream P retention. Often practices are region specific based on geology, cropping practices, and specific P related problems and thus require a right practice, and right place mentality to management. Each practice has fundamental P transport and retention processes by systems that can be optimized bymanagementwith the goal of reducing downstream P loading after P has left agricultural fields. The management of P requires a system-wide assessment of the stability of P in different biogeochemical forms (particulate vs. dissolved, organic vs. inorganic), in different storage pools (soil, sediment, streams etc.), and under varying biogeochemical and hydrological conditions that act to convert P from one form to another and promote its retention in or transport out of different landscape components. There is significant potential of hierarchically placing practices in the agricultural landscape and enhancing the associated P mitigation. But an understanding is needed of short- and long-term P retention mechanisms within a certain practice and incorporating maintenance schedules if necessary to improve P retention times and minimize exceeding retention capacity

    Excavating the 'Rutland Sea Dragon': The largest ichthyosaur skeleton ever found in the UK (Whitby Mudstone Formation, Toarcian, Lower Jurassic)

    Get PDF
    An almost complete ichthyosaur skeleton 10 m long was discovered in January 2021 at the Rutland Water Nature Reserve in the county of Rutland, UK. This was excavated by a small team of palaeontologists in the summer of the same year. Nicknamed ‘The Rutland Sea Dragon’, this almost fully articulated skeleton is an example of the large-bodied Early Jurassic ichthyosaur Temnodontosaurus. The specimen was analysed in situ, recorded (including a 3D scan using photogrammetry), excavated and removed from the site in a series of large plaster field jackets to preserve taphonomic information. Significantly, the specimen is the largest ichthyosaur skeleton to have been found in the UK and it may be the first recorded example of Temnodontosaurus trigonodon to be found in the country, extending its known geographic range significantly. It also represents the most complete skeleton of a large prehistoric reptile to have been found in the UK. We provide an account of the discovery and describe the methods used for excavating, recording and lifting the large skeleton which will aid palaeontologists facing similar challenges when collecting extensive remains of large and fragile fossil vertebrates. We also discuss the preliminary research findings and the global impact this discovery has had through public engagement

    Paleoecologic and paleoceanographic interpretation of δ18O variability in Lower Ordovician conodont species

    Get PDF
    Conodont δ18O is increasingly used to reconstruct Paleozoic–Triassic seawater temperature changes. Less attention has been paid to δ18O variation in time slices across paleoenvironments, within sample assemblages, or for reconstructing the thermal structure of Paleozoic oceans. Furthermore, there have been few independent tests of conodont ecologic models based on biofacies and lithofacies distributions. Here we present the rst test of ecologic models for conodonts based on δ18O values of a Laurentian Lower Ordovician (Floian) shelf edge–upper slope assemblage in debrites of the proximal lower slope Shallow Bay Formation, Cow Head Group, western Newfoundland. Nine species yield a 1.6–1.8‰ intra-sample δ18O variability based on mixed tissue and white matter-only analyses, equivalent to an ~7–8 °C range. Lin- ear mixed models demonstrate statistically signi cant differences between the δ18O of some species, supporting the interpretation that an isotopic and temperature gradient is preserved. By considering conodont δ18O in a geologic context, we propose an integrated paleoecologic and paleoceanographic model with species tiered pelagically through the water column, and con rm the utility of conodonts for water-mass characterization within Paleozoic oceans

    Biotic and stable-isotope characterization of the Toarcian Ocean Anoxic Event through a carbonate–clastic sequence from Somerset, UK

    Get PDF
    This study focuses on a condensed sequence of alternating carbonate–clastic sediments of the Barrington Member, Beacon Limestone Formation (latest Pliensbachian to early Toarcian) from Somerset (SW England). Abundant ammonites confirm (apart from the absence of the Clevelandicum and Tenuicostatum ammonite subchronozones) the presence of Hawskerense Subchronozone to Fallaciosum–Bingmanni subchronozones. Well-preserved, sometimes diverse assemblages of ostracods, foraminifera, nannofossils and lowdiversity dinoflagellate assemblages support the chronostratigraphic framework. Stable-isotope analyses demonstrate the presence of a carbon isotope excursion, relating to the Toarcian Oceanic Anoxic Event, within the early Toarcian. Faunal, geochemical and sedimentological evidence suggest that deposition largely took place in a relatively deep-water (subwave base), mid-outer shelf environment under a well-mixed water column. However, reduced benthic diversity, the presence of weakly laminated sediments and changes in microplankton assemblage composition within the Toarcian Oceanic Anoxic Event indicates dysoxic, but probably never anoxic, bottom-water conditions during this event. The onset of the carbon isotope excursion coincides with extinction in the nannofossils and benthos, including the disappearance of the ostracod suborder Metacopina. Faunal evidence indicates connectivity with the Mediterranean region, not previously recorded for the UK during the early Toarcian

    Agricultural Conservation Planning Framework: 1. Developing Multipractice Watershed Planning Scenarios and Assessing Nutrient Reduction Potential

    Get PDF
    Spatial data on soils, land use, and topography, combined with knowledge of conservation effectiveness, can be used to identify alternatives to reduce nutrient discharge from small (hydrologic unit code [HUC]12) watersheds. Databases comprising soil attributes, agricultural land use, and light detection and ranging–derived elevation models were developed for two glaciated midwestern HUC12 watersheds: Iowa’s Beaver Creek watershed has an older dissected landscape, and Lime Creek in Illinois is young and less dissected. Subsurface drainage is common in both watersheds. We identified locations for conservation practices, including in-field practices (grassed waterways), edge-of-field practices (nutrient-removal wetlands, saturated buffers), and drainage-water management, by applying terrain analyses, geographic criteria, and cross-classifications to field- and watershed-scale geographic data. Cover crops were randomly distributed to fields without geographic prioritization. A set of alternative planning scenarios was developed to represent a variety of extents of implementation among these practices. The scenarios were assessed for nutrient reduction potential using a spreadsheet approach to calculate the average nutrient-removal efficiency required among the practices included in each scenario to achieve a 40% NO3–N reduction. Results were evaluated in the context of the Iowa Nutrient Reduction Strategy, which reviewed nutrient-removal efficiencies of practices and established the 40% NO3–N reduction as Iowa’s target for Gulf of Mexico hypoxia mitigation by agriculture. In both test watersheds, planning scenarios that could potentially achieve the targeted NO3–N reduction but remov

    Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments

    Get PDF
    Six phototrophic microbial mat communities from different geothermal springs (YNP) were studied using metagenome sequencing and geochemical analyses. The primary goals of this work were to determine differences in community composition of high-temperature phototrophic mats distributed across the Yellowstone geothermal ecosystem, and to identify metabolic attributes of predominant organisms present in these communities that may correlate with environmental attributes important in niche differentiation. Random shotgun metagenome sequences from six phototrophic communities (average~ 53 Mbp/site) were subjected to multiple taxonomic, phylogenetic and functional analyses. All methods, including G+C content distribution, MEGAN analyses and oligonucleotide frequency-based clustering, provided strong support for the dominant community members present in each site. Cyanobacteria were only observed in non-sulfidic sites; de novo assemblies were obtained for Synechococcus-like populations at Chocolate Pots (CP_7) and Fischerella-like populations at White Creek (WC_6). Chloroflexi-like sequences (esp. Roseiflexus and/or Chloroflexus spp.) were observed in all six samples and contained genes involved in bacteriochlorophyll biosynthesis and the 3-hydroxypropionate carbon fixation pathway. Other major sequence assemblies were obtained for a Chlorobiales population from CP_7 (proposed family Thermochlorobacteriaceae), and an anoxygenic, sulfur-oxidizing Thermochromatium-like (Gamma-proteobacteria) population from Bath Lake Vista Annex (BLVA_20). Additional sequence coverage is necessary to establish more complete assemblies of other novel bacteria in these sites (e.g., Bacteroidetes and Firmicutes); however, current assemblies suggested that several of these organisms play important roles in heterotrophic and fermentative metabolisms. Definitive linkages were established between several of the dominant phylotypes present in these habitats and important functional processes such a

    Structured Decision-Making and Rapid Prototyping to Plan a Management Response to an Invasive Species

    Get PDF
    We developed components of a decision structure that could be used in an adaptive management framework for responding to invasion of hemlock woolly adelgid Adeleges tsugae on the Cumberland Plateau of northern Tennessee. Hemlock woolly adelgid, an invasive forest pest, was first detected in this area in 2007. We used a structured decision-making process to identify and refine the management problem, objectives, and alternative management actions, and to assess consequences and tradeoffs among selected management alternatives. We identified four fundamental objectives: 1) conserve the aquatic and terrestrial riparian conservation targets, 2) protect and preserve hemlock, 3) develop and maintain adequate budget, and 4) address public concerns. We designed two prototype responses using an iterative process. By rapidly prototyping a first solution, insights were gained and shortcomings were identified, and some of these shortcomings were incorporated and corrected in the second prototype. We found that objectives were best met when management focused on early treatment of lightly to moderately infested but relatively healthy hemlock stands with biological control agent predator beetles and insect-killing fungi. Also, depending on the cost constraint, early treatment should be coupled with silvicultural management of moderately to severely infested and declining hemlock stands to accelerate conversion to nonhemlock mature forest cover. The two most valuable contributions of the structured decision-making process were 1) clarification and expansion of our objectives, and 2) application of tools to assess tradeoffs and predict consequences of alternative actions. Predicting consequences allowed us to evaluate the influence of uncertainty on the decision. For example, we found that the expected number of mature forest stands over 30 y would be increased by 4% by resolving the uncertainty regarding predator beetle effectiveness. The adaptive management framework requires further development including identifying and evaluating uncertainty, formalizing other competing predictive models, designing a monitoring program to update the predictive models, developing a process for re-evaluating the predictive models and incorporating new management technologies, and generating support for planning and implementation

    Continental carbonate facies of a Neoproterozoic panglaciation, north-east Svalbard

    Get PDF
    The Marinoan panglaciation (ca 650 to 635 Ma) is represented in north-east Svalbard by the 130 to 175 m thick Wilsonbreen Formation which contains syn-glacial carbonates in its upper 100 m. These sediments are now known to have been deposited under a CO2-rich atmosphere, late in the glaciation, and global climate models facilitate testing of proposed analogues. Precipitated carbonates occur in four of the seven facies associations identified: Fluvial Channel (including stromatolitic and intraclastic limestones in ephemeral stream deposits); Dolomitic Floodplain (dolomite-cemented sand and siltstones, and microbial dolomites); Calcareous Lake Margin (intraclastic dolomite and wave-rippled or aeolian siliciclastic facies); and Calcareous Lake (slump-folded and locally re-sedimented rhythmic/stromatolitic limestones and dolomites associated with ice-rafted sediment). There is no strong cyclicity, and modern analogues suggest that sudden changes in lake level may exert a strong control on facies geometry. Both calcite and dolomite in stromatolites and rhythmites display either primary or early diagenetic replacive growth. Oxygen isotope values (−12 to +15‰VPDB) broadly covary with δ13C. High δ13C values of +3·5 to +4·5‰ correspond to equilibration with an atmosphere dominated by volcanically degassed CO2 with δ13C of −6 to −7‰. Limestones have consistently negative δ18O values, while rhythmic and playa dolomites preserve intermediate compositions, and dolocretes possess slightly negative to strongly positive δ18O signatures, reflecting significant evaporation under hyperarid conditions. Inferred meltwater compositions (−8 to −15·5‰) could reflect smaller Rayleigh fractionation related to more limited cooling than in modern polar regions. A common pseudomorph morphology is interpreted as a replacement of ikaite (CaCO3·H2O), which may also have been the precursor for widespread replacive calcite mosaics. Local dolomitization of lacustrine facies is interpreted to reflect microenvironments with fluctuating redox conditions. Although differing in (palaeo)latitude and carbonate abundance, the Wilsonbreen carbonates provide strong parallels with the McMurdo Dry Valleys of Antarctica
    • …
    corecore