192 research outputs found

    Commentary on the WHO classification of tumors of lymphoid tissues (2008): aggressive B-cell lymphomas

    Get PDF
    In the novel WHO classification 2008, the classification of aggressive B-cell lymphoma has been revised for several categories with the aim to define “clean” entities. Within large B-cell lymphoma, a few distinct clinico-pathological entities have been recognized with more clinically defined entities than pathologically defined ones. The majority of known morphological variations were not considered to merit more than classification as a variant of DLBCL, not otherwise specified. Specifically, a biological subgrouping of DLBCL on the basis of molecular (activated B-cell versus germinal center B-cell) or immunophenotypic (CD5+) features was felt to be too immature to include at this stage. The role of EBV in aggressive B-cell lymphoma has been explored in more depth with the recognition of several novel and re-defined clinico-pathological entities. Also, in these diseases, clinical definitions play a very dominant role in the WHO classification 2008

    Oblique decision trees for spatial pattern detection: optimal algorithm and application to malaria risk

    Get PDF
    BACKGROUND: In order to detect potential disease clusters where a putative source cannot be specified, classical procedures scan the geographical area with circular windows through a specified grid imposed to the map. However, the choice of the windows' shapes, sizes and centers is critical and different choices may not provide exactly the same results. The aim of our work was to use an Oblique Decision Tree model (ODT) which provides potential clusters without pre-specifying shapes, sizes or centers. For this purpose, we have developed an ODT-algorithm to find an oblique partition of the space defined by the geographic coordinates. METHODS: ODT is based on the classification and regression tree (CART). As CART finds out rectangular partitions of the covariate space, ODT provides oblique partitions maximizing the interclass variance of the independent variable. Since it is a NP-Hard problem in R(N), classical ODT-algorithms use evolutionary procedures or heuristics. We have developed an optimal ODT-algorithm in R(2), based on the directions defined by each couple of point locations. This partition provided potential clusters which can be tested with Monte-Carlo inference. We applied the ODT-model to a dataset in order to identify potential high risk clusters of malaria in a village in Western Africa during the dry season. The ODT results were compared with those of the Kulldorff' s SaTScanℱ. RESULTS: The ODT procedure provided four classes of risk of infection. In the first high risk class 60%, 95% confidence interval (CI95%) [52.22–67.55], of the children was infected. Monte-Carlo inference showed that the spatial pattern issued from the ODT-model was significant (p < 0.0001). Satscan results yielded one significant cluster where the risk of disease was high with an infectious rate of 54.21%, CI95% [47.51–60.75]. Obviously, his center was located within the first high risk ODT class. Both procedures provided similar results identifying a high risk cluster in the western part of the village where a mosquito breeding point was located. CONCLUSION: ODT-models improve the classical scanning procedures by detecting potential disease clusters independently of any specification of the shapes, sizes or centers of the clusters

    Using the SaTScan method to detect local malaria clusters for guiding malaria control programmes

    Get PDF
    Mpumalanga Province, South Africa is a low malaria transmission area that is subject to malaria epidemics. SaTScan methodology was used by the malaria control programme to detect local malaria clusters to assist disease control planning. The third season for case cluster identification overlapped with the first season of implementing an outbreak identification and response system in the area. SaTScanℱ software using the Kulldorf method of retrospective space-time permutation and the Bernoulli purely spatial model was used to identify malaria clusters using definitively confirmed individual cases in seven towns over three malaria seasons. Following passive case reporting at health facilities during the 2002 to 2005 seasons, active case detection was carried out in the communities, this assisted with determining the probable source of infection. The distribution and statistical significance of the clusters were explored by means of Monte Carlo replication of data sets under the null hypothesis with replications greater than 999 to ensure adequate power for defining clusters. SaTScan detected five space-clusters and two space-time clusters during the study period. There was strong concordance between recognized local clustering of cases and outbreak declaration in specific towns. Both Albertsnek and Thambokulu reported malaria outbreaks in the same season as space-time clusters. This synergy may allow mutual validation of the two systems in confirming outbreaks demanding additional resources and cluster identification at local level to better target resources. Exploring the clustering of cases assisted with the planning of public health activities, including mobilizing health workers and resources. Where appropriate additional indoor residual spraying, focal larviciding and health promotion activities, were all also carried out

    Common Sole Larvae Survive High Levels of Pile-Driving Sound in Controlled Exposure Experiments

    Get PDF
    In view of the rapid extension of offshore wind farms, there is an urgent need to improve our knowledge on possible adverse effects of underwater sound generated by pile-driving. Mortality and injuries have been observed in fish exposed to loud impulse sounds, but knowledge on the sound levels at which (sub-)lethal effects occur is limited for juvenile and adult fish, and virtually non-existent for fish eggs and larvae. A device was developed in which fish larvae can be exposed to underwater sound. It consists of a rigid-walled cylindrical chamber driven by an electro-dynamical sound projector. Samples of up to 100 larvae can be exposed simultaneously to a homogeneously distributed sound pressure and particle velocity field. Recorded pile-driving sounds could be reproduced accurately in the frequency range between 50 and 1000 Hz, at zero to peak pressure levels up to 210 dB re 1”Pa2 (zero to peak pressures up to 32 kPa) and single pulse sound exposure levels up to 186 dB re 1”Pa2s. The device was used to examine lethal effects of sound exposure in common sole (Solea solea) larvae. Different developmental stages were exposed to various levels and durations of pile-driving sound. The highest cumulative sound exposure level applied was 206 dB re 1”Pa2s, which corresponds to 100 strikes at a distance of 100 m from a typical North Sea pile-driving site. The results showed no statistically significant differences in mortality between exposure and control groups at sound exposure levels which were well above the US interim criteria for non-auditory tissue damage in fish. Although our findings cannot be extrapolated to fish larvae in general, as interspecific differences in vulnerability to sound exposure may occur, they do indicate that previous assumptions and criteria may need to be revised

    Mapping of mosquito breeding sites in malaria endemic areas in Pos Lenjang, Kuala Lipis, Pahang, Malaysia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The application of the Geographic Information Systems (GIS) to the study of vector transmitted diseases considerably improves the management of the information obtained from the field survey and facilitates the study of the distribution patterns of the vector species.</p> <p>Methods</p> <p>As part of a study to assess remote sensing data as a tool for vector mapping, geographical features like rivers, small streams, forest, roads and residential area were digitized from the satellite images and overlaid with entomological data. Map of larval breeding habitats distribution and map of malaria transmission risk area were developed using a combination of field data, satellite image analysis and GIS technique. All digital data in the GIS were displayed in the WGS 1984 coordinate system. Six occasions of larval surveillance were also conducted to determine the species of mosquitoes, their characteristics and the abundance of habitats.</p> <p>Results</p> <p>Larval survey studies showed that anopheline and culicine larvae were collected and mapped from 79 and 67 breeding sites respectively. Breeding habitats were located at 100-400 m from human settlement. Map of villages with 400 m buffer zone visualizes that more than 80% of <it>Anopheles maculatus s.s</it>. immature habitats were found within the buffer zone.</p> <p>Conclusions</p> <p>This study amplifies the need for a broadening of the GIS approach which is emphasized with the aim of rejuvenating the dynamic aspect of entomological studies in Malaysia. In fact, the use of such basic GIS platforms promote a more rational basis for strategic planning and management in the control of endemic diseases at the national level.</p

    Space-time clustering of childhood malaria at the household level: a dynamic cohort in a Mali village

    Get PDF
    BACKGROUND: Spatial and temporal heterogeneities in the risk of malaria have led the WHO to recommend fine-scale stratification of the epidemiological situation, making it possible to set up actions and clinical or basic researches targeting high-risk zones. Before initiating such studies it is necessary to define local patterns of malaria transmission and infection (in time and in space) in order to facilitate selection of the appropriate study population and the intervention allocation. The aim of this study was to identify, spatially and temporally, high-risk zones of malaria, at the household level (resolution of 1 to 3 m). METHODS: This study took place in a Malian village with hyperendemic seasonal transmission as part of Mali-Tulane Tropical Medicine Research Center (NIAID/NIH). The study design was a dynamic cohort (22 surveys, from June 1996 to June 2001) on about 1300 children (<12 years) distributed between 173 households localized by GPS. We used the computed parasitological data to analyzed levels of Plasmodium falciparum, P. malariae and P. ovale infection and P. falciparum gametocyte carriage by means of time series and Kulldorff's scan statistic for space-time cluster detection. RESULTS: The time series analysis determined that malaria parasitemia (primarily P. falciparum) was persistently present throughout the population with the expected seasonal variability pattern and a downward temporal trend. We identified six high-risk clusters of P. falciparum infection, some of which persisted despite an overall tendency towards a decrease in risk. The first high-risk cluster of P. falciparum infection (rate ratio = 14.161) was detected from September 1996 to October 1996, in the north of the village. CONCLUSION: This study showed that, although infection proportions tended to decrease, high-risk zones persisted in the village particularly near temporal backwaters. Analysis of this heterogeneity at the household scale by GIS methods lead to target preventive actions more accurately on the high-risk zones identified. This mapping of malaria risk makes it possible to orient control programs, treating the high-risk zones identified as a matter of priority, and to improve the planning of intervention trials or research studies on malaria

    Development and Experimental Validation of a 20K Atlantic Cod (Gadus morhua) Oligonucleotide Microarray Based on a Collection of over 150,000 ESTs

    Get PDF
    The collapse of Atlantic cod (Gadus morhua) wild populations strongly impacted the Atlantic cod fishery and led to the development of cod aquaculture. In order to improve aquaculture and broodstock quality, we need to gain knowledge of genes and pathways involved in Atlantic cod responses to pathogens and other stressors. The Atlantic Cod Genomics and Broodstock Development Project has generated over 150,000 expressed sequence tags from 42 cDNA libraries representing various tissues, developmental stages, and stimuli. We used this resource to develop an Atlantic cod oligonucleotide microarray containing 20,000 unique probes. Selection of sequences from the full range of cDNA libraries enables application of the microarray for a broad spectrum of Atlantic cod functional genomics studies. We included sequences that were highly abundant in suppression subtractive hybridization (SSH) libraries, which were enriched for transcripts responsive to pathogens or other stressors. These sequences represent genes that potentially play an important role in stress and/or immune responses, making the microarray particularly useful for studies of Atlantic cod gene expression responses to immune stimuli and other stressors. To demonstrate its value, we used the microarray to analyze the Atlantic cod spleen response to stimulation with formalin-killed, atypical Aeromonas salmonicida, resulting in a gene expression profile that indicates a strong innate immune response. These results were further validated by quantitative PCR analysis and comparison to results from previous analysis of an SSH library. This study shows that the Atlantic cod 20K oligonucleotide microarray is a valuable new tool for Atlantic cod functional genomics research

    Causal and associational language in observational health research: A systematic evaluation.

    Get PDF
    This is the final version. Available from Oxford University Press via the DOI in this record. Data, data analysis code, and materials are available on the Open Science Framework project https://osf.io/jtdaz/.We estimated the degree to which language used in the high profile medical/public health/epidemiology literature implied causality using language linking exposures to outcomes and action recommendations; examined disconnects between language and recommendations; identified the most common linking phrases; and estimated how strongly linking phrases imply causality. We searched and screened for 1,170 articles from 18 high-profile journals (65 per journal) published from 2010-2019. Based on written framing and systematic guidance, three reviewers rated the degree of causality implied in abstracts and full text for exposure/outcome linking language and action recommendations. Reviewers rated the causal implication of exposure/outcome linking language as None (no causal implication) in 13.8%, Weak 34.2%, Moderate 33.2%, and Strong 18.7% of abstracts. The implied causality of action recommendations was higher than the implied causality of linking sentences for 44.5% or commensurate for 40.3% of articles. The most common linking word in abstracts was "associate" (45.7%). Reviewers' ratings of linking word roots were highly heterogeneous; over half of reviewers rated "association" as having at least some causal implication. This research undercuts the assumption that avoiding "causal" words leads to clarity of interpretation in medical research.Marie SkƂodowska-Curie grantAustralian Research CouncilNational Institute of Mental HealthNational Institute of Mental HealthNational Institute of Biomedical Imaging and BioengineeringNational Center for Advancing Translational Sciences UCLA Clinical Translational Science InstituteBloomberg American Health InitiativeKaren Toffler Charity Trus
    • 

    corecore