31 research outputs found
âNever waste a crisisâ: a commentary on the COVIDâ19 pandemic as a driver for innovation in maternity care
Abstract unavailable
âNever waste a crisisâ: a commentary on the COVIDâ19 pandemic as a driver for innovation in maternity care
Abstract unavailable
Recommended from our members
Utilizing general information theories for uncertainty quantification
Uncertainties enter into a complex problem from many sources: variability, errors, and lack of knowledge. A fundamental question arises in how to characterize the various kinds of uncertainty and then combine within a problem such as the verification and validation of a structural dynamics computer model, reliability of a dynamic system, or a complex decision problem. Because uncertainties are of different types (e.g., random noise, numerical error, vagueness of classification), it is difficult to quantify all of them within the constructs of a single mathematical theory, such as probability theory. Because different kinds of uncertainty occur within a complex modeling problem, linkages between these mathematical theories are necessary. A brief overview of some of these theories and their constituents under the label of Generalized lnforrnation Theory (GIT) is presented, and a brief decision example illustrates the importance of linking at least two such theories
Recommended from our members
Inferences from Rossi Traces.
The authors an uncertainty analysis of data taken using the Rossi technique, in which the horizontal oscilloscope sweep is driven sinusoidally in time ,while the vertical axis follows the signal amplitude. The analysis is done within a Bayesian framework. Complete inferences are obtained by tilting the Markov chain Monte Carlo technique, which produces random samples from the posterior probability distribution expressed in terms of the parameters