503 research outputs found

    Molecular Tracers of Embedded Star Formation in Ophiuchus

    Full text link
    In this paper we analyze nine SCUBA cores in Ophiuchus using the second-lowest rotational transitions of four molecular species (12CO, 13CO, C18O, and C17O) to search for clues to the evolutionary state and star-formation activity within each core. Specifically, we look for evidence of outflows, infall, and CO depletion. The line wings in the CO spectra are used to detect outflows, spectral asymmetries in 13CO are used to determine infall characteristics, and a comparison of the dust emission (from SCUBA observations) and gas emission (from C18O) is used to determine the fractional CO freeze-out. Through comparison with Spitzer observations of protostellar sources in Ophiuchus, we discuss the usefulness of CO and its isotopologues as the sole indicators of the evolutionary state of each core. This study is an important pilot project for the JCMT Legacy Survey of the Gould Belt (GBS) and the Galactic Plane (JPS), which intend to complement the SCUBA-2 dust continuum observations with HARP observations of 12CO, 13CO, C18O, and C17O J = 3 - 2 in order to determine whether or not the cold dust clumps detected by SCUBA-2 are protostellar or starless objects. Our classification of the evolutionary state of the cores (based on molecular line maps and SCUBA observations) is in agreement with the Spitzer designation for six or seven of the nine SCUBA cores. However, several important caveats exist in the interpretation of these results, many of which large mapping surveys like the GBS may be able to overcome to provide a clearer picture of activity in crowded fields.Comment: 43 pages including 19 postscript figures. Accepted for publication in the PAS

    Understanding star formation in molecular clouds I. Effects of line-of-sight contamination on the column density structure

    Full text link
    Column-density maps of molecular clouds are one of the most important observables in the context of molecular cloud- and star-formation (SF) studies. With the Herschel satellite it is now possible to determine the column density from dust emission. We use observations and simulations to demonstrate how LOS contamination affects the column density probability distribution function (PDF). We apply a first-order approximation (removing a constant level) to the molecular clouds of Auriga, Maddalena, Carina and NGC3603. In perfect agreement with the simulations, we find that the PDFs become broader, the peak shifts to lower column densities, and the power-law tail of the PDF flattens after correction. All PDFs have a lognormal part for low column densities with a peak at Av~2, a deviation point (DP) from the lognormal at Av(DP)~4-5, and a power-law tail for higher column densities. Assuming a density distribution rho~r^-alpha, the slopes of the power-law tails correspond to alpha(PDF)=1.8, 1.75, and 2.5 for Auriga, Carina, and NGC3603 (alpha~1.5-2 is consistent gravitational collapse). We find that low-mass and high-mass SF clouds display differences in the overall column density structure. Massive clouds assemble more gas in smaller cloud volumes than low-mass SF ones. However, for both cloud types, the transition of the PDF from lognormal shape into power-law tail is found at the same column density (at Av~4-5 mag). Low-mass and high-mass SF clouds then have the same low column density distribution, most likely dominated by supersonic turbulence. At higher column densities, collapse and external pressure can form the power-law tail. The relative importance of the two processes can vary between clouds and thus lead to the observed differences in PDF and column density structure.Comment: A&A accepted, 15.12. 201

    Infall models of Class 0 protostars

    Full text link
    We have carried out radiative transfer calculations of infalling, dusty envelopes surrounding embedded protostars to understand the observed properties of the recently identified ``Class 0'' sources. To match the far-infrared peaks in the spectral energy distributions of objects such as the prototype Class 0 source VLA 1623, pure collapse models require mass infall rates \sim10^{-4}\msunyr1^{-1}. The radial intensity distributions predicted by such infall models are inconsistent with observations of VLA 1623 at sub-mm wavelengths, in agreement with the results of Andre et al. (1993) who found a density profile of ρr1/2\rho \propto r^{-1/2} rather than the expected ρr3/2\rho \propto r^{-3/2} gradient. To resolve this conflict, while still invoking infall to produce the outflow source at the center of VLA 1623, we suggest that the observed sub-mm intensity distribution is the sum of two components: an inner infall zone, plus an outer, more nearly constant-density region. This explanation of the observations requires that roughly half the total mass observed within 2000 AU radius of the source lies in a region external to the infall zone. The column densities for this external region are comparable to those found in the larger Oph A cloud within which VLA 1623 is embedded. The extreme environments of Class 0 sources lead us to suggest an alternative or additional interpretation of these objects: rather than simply concluding with Andre et al. that Class 0 objects only represent the earliest phases of protostellar collapse, and ultimately evolve into older ``Class I'' protostars, we suggest that many Class 0 sources could be the protostars of very dense regions. (Shortened)Comment: 22 pages, including 3 PostScript figures, accepted for publication in The Astrophysical Journa

    Star Formation Near Photodissociation Regions: Detection of a Peculiar Protostar Near Ced 201

    Full text link
    We present the detection and characterization of a peculiar low-mass protostar (IRAS 22129+7000) located ~0.4 pc from Ced 201 Photodissociation Region (PDR) and ~0.2 pc from the HH450 jet. The cold circumstellar envelope surrounding the object has been mapped through its 1.2 mm dust continuum emission with IRAM-30m/MAMBO. The deeply embedded protostar is clearly detected with Spitzer/MIPS (70 um), IRS (20-35 um) and IRAC (4.5, 5.8, and 8 um) but also in the K_s band (2.15 um). Given the large "near- and mid-IR excess" in its spectral energy distribution, but large submillimeter-to-bolometric luminosity ratio (~2%), IRAS 22129+7000 must be a transition Class 0/I source and/or a multiple stellar system. Targeted observations of several molecular lines from CO, 13CO, C18O, HCO+ and DCO+ have been obtained. The presence of a collimated molecular outflow mapped with the CSO telescope in the CO J=3-2 line suggests that the protostar/disk system is still accreting material from its natal envelope. Indeed, optically thick line profiles from high density tracers such as HCO+ J=1-0 show a red-shifted-absorption asymmetry reminiscent of inward motions. We construct a preliminary physical model of the circumstellar envelope (including radial density and temperature gradients, velocity field and turbulence) that reproduces the observed line profiles and estimates the ionization fraction. The presence of both mechanical and (non-ionizing) FUV-radiative input makes the region an interesting case to study triggered star formation

    The rotating molecular core and precessing outflow of the young stellar object Barnard 1c

    Get PDF
    We investigate the structure of the core surrounding the recently identified deeply embedded young stellar object Barnard 1c which has an unusual polarization pattern as traced in submillimeter dust emission. Barnard 1c lies within the Perseus molecular cloud at a distance of 250 pc. It is a deeply embedded core of 2.4 solar masses (Kirk et al.) and a luminosity of 4 +/- 2 solar luminosities. Observations of CO, 13CO, C18O, HCO+ and N2H+ were obtained with the BIMA array, together with the continuum at 3.3 mm and 2.7 mm. Single-dish measurements of N2H+ and HCO+ with FCRAO reveal the larger scale emission in these lines, The CO and HCO+ emission traces the outflow, which coincides in detail with the S-shaped jet recently found in Spitzer IRAC imaging. The N2H+ emission, which anticorrelates spatially with the C18O emission, originates from a rotating envelope with effective radius ~ 2400 AU and mass 2.1 - 2.9 solar masses. N2H+ emission is absent from a 600 AU diameter region around the young star. The remaining N2H+ emission may lie in a coherent torus of dense material. With its outflow and rotating envelope, B1c closely resembles the previously studied object L483-mm, and we conclude that it is a protostar in an early stage of evolution. We hypothesize that heating by the outflow and star has desorbed CO from grains which has destroyed N2H+ in the inner region and surmise that the presence of grains without ice mantles in this warm inner region can explain the unusual polarization signature from B1c.Comment: 17 pages, 17 figures (9 colour). Accepted to The Astrophysical Journal. For higher resolution images, see http://astrowww.phys.uvic.ca/~brenda/preprints.htm

    Large scale IRAM 30m CO-observations in the giant molecular cloud complex W43

    Get PDF
    We aim to give a full description of the distribution and location of dense molecular clouds in the giant molecular cloud complex W43. It has previously been identified as one of the most massive star-forming regions in our Galaxy. To trace the moderately dense molecular clouds in the W43 region, we initiated an IRAM 30m large program, named W43-HERO, covering a large dynamic range of scales (from 0.3 to 140 pc). We obtained on-the-fly-maps in 13CO (2-1) and C18O (2-1) with a high spectral resolution of 0.1 km/s and a spatial resolution of 12". These maps cover an area of ~1.5 square degrees and include the two main clouds of W43, as well as the lower density gas surrounding them. A comparison with Galactic models and previous distance calculations confirms the location of W43 near the tangential point of the Scutum arm at a distance from the Sun of approximately 6 kpc. The resulting intensity cubes of the observed region are separated into sub-cubes, centered on single clouds which are then analyzed in detail. The optical depth, excitation temperature, and H2 column density maps are derived out of the 13CO and C18O data. These results are then compared with those derived from Herschel dust maps. The mass of a typical cloud is several 10^4 solar masses while the total mass in the dense molecular gas (>100 cm^-3) in W43 is found to be about 1.9e6 solar masses. Probability distribution functions obtained from column density maps derived from molecular line data and Herschel imaging show a log-normal distribution for low column densities and a power-law tail for high densities. A flatter slope for the molecular line data PDF may imply that those selectively show the gravitationally collapsing gas

    Constraints on the Formation and Evolution of Circumstellar Disks in Rotating Magnetized Cloud Cores

    Get PDF
    We use magnetic collapse models to place some constraints on the formation and angular momentum evolution of circumstellar disks which are embedded in magnetized cloud cores. Previous models have shown that the early evolution of a magnetized cloud core is governed by ambipolar diffusion and magnetic braking, and that the core takes the form of a nonequilibrium flattened envelope which ultimately collapses dynamically to form a protostar. In this paper, we focus on the inner centrifugally-supported disk, which is formed only after a central protostar exists, and grows by dynamical accretion from the flattened envelope. We estimate a centrifugal radius for the collapse of mass shells within a rotating, magnetized cloud core. The centrifugal radius of the inner disk is related to its mass through the two important parameters characterizing the background medium: the background rotation rate \Omb and the background magnetic field strength \Bref. We also revisit the issue of how rapidly mass is deposited onto the disk (the mass accretion rate) and use several recent models to comment upon the likely outcome in magnetized cores. Our model predicts that a significant centrifugal disk (much larger than a stellar radius) will be present in the very early (Class 0) stage of protostellar evolution. Additionally, we derive an upper limit for the disk radius as it evolves due to internal torques, under the assumption that the star-disk system conserves its mass and angular momentum even while most of the mass is transferred to a central star.Comment: 23 pages, 1 figure, aastex, to appear in the Astrophysical Journal (10 Dec 1998

    Infrared Properties of Electron Doped Cuprates: Tracking Normal State Gaps and Quantum Critical Behavior in Pr(2-x)Ce(x)CuO(4)

    Full text link
    We report the temperature dependence of the infrared-visible conductivity of Pr(2-x)Ce(x)CuO(4) thin films. When varying the doping from a non-superconducting film (x = 0.11) to a superconducting overdoped film (x = 0.17), we observe, up to optimal doping (x = 0.15), a partial gap opening. A model combining a spin density wave gap and a frequency and temperature dependent self energy reproduces our data reasonably well. The magnitude of this gap extrapolates to zero for x ~ 0.17 indicating the coexistence of magnetism and superconductivity in this material and the existence of a quantum critical point at this Ce concentration.Comment: 5 pages 6 figures include

    Massive Clumps in the NGC 6334 Star Forming Region

    Full text link
    We report observations of dust continuum emission at 1.2 mm toward the star forming region NGC 6334 made with the SEST SIMBA bolometer array. The observations cover an area of 2\sim 2 square degrees with approximately uniform noise. We detected 181 clumps spanning almost three orders of magnitude in mass (3\Msun6×103-6\times10^3 \Msun) and with sizes in the range 0.1--1.0 pc. We find that the clump mass function dN/dlogMdN/d\log M is well fit with a power law of the mass with exponent -0.6 (or equivalently dN/dMM1.6dN/dM \propto M^{-1.6}). The derived exponent is similar to those obtained from molecular line emission surveys and is significantly different from that of the stellar initial mass function. We investigated changes in the mass spectrum by changing the assumptions on the temperature distribution of the clumps and on the contribution of free-free emission to the 1.2 mm emission, and found little changes on the exponent. The Cumulative Mass Distribution Function is also analyzed giving consistent results in a mass range excluding the high-mass end where a power-law fit is no longer valid. The masses and sizes of the clumps observed in NGC 6334 indicate that they are not direct progenitors of stars and that the process of fragmentation determines the distribution of masses later on or occurs at smaller spatial scales. The spatial distribution of the clumps in NGC 6334 reveals clustering which is strikingly similar to that exhibited by young stars in other star forming regions. A power law fit to the surface density of companions gives Σθ0.62\Sigma\propto \theta^{-0.62}.Comment: 16 pages, 11 figures, 4 tables. To appear in the Astrophysical Journa

    How To Make A Pie: Reproducible Research for Empirical Economics & Econometrics

    Get PDF
    Empirical economics and econometrics (EEE) research now relies primarily on the application of code to datasets. Handling the workflow linking datasets, programs, results and finally manuscript(s) is essential if one wish to reproduce results, which is now increasingly required by journals and institutions. We underline here the importance of “reproducible research” in EEE and suggest three simple principles to follow. We illustrate these principles with good habits and tools, with particular focus on their implementation in most popular software and languages in applied economics
    corecore