839 research outputs found
Cluster Formation in Protostellar Outflow-Driven Turbulence
Most, perhaps all, stars go through a phase of vigorous outflow during
formation. We examine, through 3D MHD simulation, the effects of protostellar
outflows on cluster formation. We find that the initial turbulence in the
cluster-forming region is quickly replaced by motions generated by outflows.
The protostellar outflow-driven turbulence (``protostellar turbulence'' for
short) can keep the region close to a virial equilibrium long after the initial
turbulence has decayed away. We argue that there exist two types of turbulence
in star-forming clouds: a primordial (or ``interstellar'') turbulence and a
protostellar turbulence, with the former transformed into the latter mostly in
embedded clusters such as NGC 1333. Since the majority of stars are thought to
form in clusters, an implication is that the stellar initial mass function is
determined to a large extent by the stars themselves, through outflows which
individually limit the mass accretion onto forming stars and collectively shape
the environments (density structure and velocity field) in which most cluster
members form. We speculate that massive cluster-forming clumps supported by
protostellar turbulence gradually evolve towards a highly centrally condensed
``pivotal'' state, culminating in rapid formation of massive stars in the
densest part through accretion.Comment: 11 pages (aastex format), 2 figures submitted to ApJ
Multiple protostellar systems. II. A high resolution near-infrared imaging survey in nearby star-forming regions
(abridged) Our project endeavors to obtain a robust view of multiplicity
among embedded Class I and Flat Spectrum protostars in a wide array of nearby
molecular clouds to disentangle ``universal'' from cloud-dependent processes.
We have used near-infrared adaptive optics observations at the VLT through the
H, Ks and L' filters to search for tight companions to 45 Class I and Flat
Spectrum protostars located in 4 different molecular clouds (Taurus-Auriga,
Ophiuchus, Serpens and L1641 in Orion). We complemented these observations with
published high-resolution surveys of 13 additional objects in Taurus and
Ophiuchus. We found multiplicity rates of 32+/-6% and 47+/-8% over the 45-1400
AU and 14-1400 AU separation ranges, respectively. These rates are in excellent
agreement with those previously found among T Tauri stars in Taurus and
Ophiuchus, and represent an excess of a factor ~1.7 over the multiplicity rate
of solar-type field stars. We found no non-hierarchical triple systems, nor any
quadruple or higher-order systems. No significant cloud-to-cloud difference has
been found, except for the fact that all companions to low-mass Orion
protostars are found within 100 AU of their primaries whereas companions found
in other clouds span the whole range probed here. Based on this survey, we
conclude that core fragmentation always yields a high initial multiplicity
rate, even in giant molecular clouds such as the Orion cloud or in clustered
stellar populations as in Serpens, in contrast with predictions of numerical
simulations. The lower multiplicity rate observed in clustered Class II and
Class III populations can be accounted for by a universal set of properties for
young systems and subsequent ejections through close encounters with unrelated
cluster members.Comment: 15 pages, 6 figures, accepted for publication in Astronomy &
Astrophysic
A multi-wavelength census of star formation activity in the young embedded cluster around Serpens/G3-G6
Aims. The aim of this paper is to characterise the star formation activity in
the poorly studied embedded cluster Serpens/G3-G6, located ~ 45' (3 pc) to the
south of the Serpens Cloud Core, and to determine the luminosity and mass
functions of its population of Young Stellar Objects (YSOs).
Methods. Multi-wavelength broadband photometry was obtained to sample the
near and mid-IR spectral energy distributions to separate YSOs from field stars
and classify the YSO evolutionary stage. ISOCAM mapping in the two filters LW2
(5-8.5 um) and LW3 (12-18 um) of a 19' x 16' field was combined with JHKs data
from 2MASS, Ks data from Arnica/NOT, and L' data from SIRCA/NOT. Continuum
emission at 1.3 mm (IRAM) and 3.6 cm (VLA) was mapped to study the cloud
structure and the coldest/youngest sources. Deep narrow band imaging at the
2.12 um S(1) line of H2 from NOTCam/NOT was obtained to search for signs of
bipolar outflows.
Results. We have strong evidence for a stellar population of 31 Class II
sources, 5 flat-spectrum sources, 5 Class I sources, and two Class 0 sources.
Our method does not sample the Class III sources. The cloud is composed of two
main dense clumps aligned along a ridge over ~ 0.5 pc plus a starless core
coinciding with absorption features seen in the ISOCAM maps. We find two
S-shaped bipolar collimated flows embedded in the NE clump, and propose the two
driving sources to be a Class 0 candidate (MMS3) and a double Class I (MMS2).
For the Class II population we find a best age of ~ 2 Myr and compatibility
with recent Initial Mass Functions (IMFs) by comparing the observed Class II
luminosity function (LF), which is complete to 0.08 L_sun, to various model LFs
with different star formation scenarios and input IMFs.Comment: 18 pages, 16 figures, 3 online tables, accepted by A&
The Detection and Characterization of cm Radio Continuum Emission from the Low-mass Protostar L1014-IRS
Observations by the Cores to Disk Legacy Team with the Spitzer Space
Telescope have identified a low luminosity, mid-infrared source within the
dense core, Lynds 1014, which was previously thought to harbor no internal
source. Followup near-infrared and submillimeter interferometric observations
have confirmed the protostellar nature of this source by detecting scattered
light from an outflow cavity and a weak molecular outflow. In this paper, we
report the detection of cm continuum emission with the VLA. The emission is
characterized by a quiescent, unresolved 90 uJy 6 cm source within 0.2" of the
Spitzer source. The spectral index of the quiescent component is between 6 cm and 3.6 cm. A factor of two increase in 6 cm
emission was detected during one epoch and circular polarization was marginally
detected at the level with Stokes {V/I} % . We have
searched for 22 GHz H2O maser emission toward L1014-IRS, but no masers were
detected during 7 epochs of observations between June 2004 and December 2006.
L1014-IRS appears to be a low-mass, accreting protostar which exhibits cm
emission from a thermal jet or a wind, with a variable non-thermal emission
component. The quiescent cm radio emission is noticeably above the correlation
of 3.6 cm and 6 cm luminosity versus bolometric luminosity, indicating more
radio emission than expected. We characterize the cm continuum emission in
terms of observations of other low-mass protostars, including updated
correlations of centimeter continuum emission with bolometric luminosity and
outflow force, and discuss the implications of recent larger distance estimates
on the physical attributes of the protostar and dense molecular core.Comment: 14 pages. Accepted for publication in Ap
Star formation triggered by the Galactic HII region RCW 120: First results from the Herschel Space Observatory
By means of different physical mechanisms, the expansion of HII regions can
promote the formation of new stars of all masses. RCW 120 is a nearby Galactic
HII region where triggered star formation occurs. This region is well-studied -
there being a wealth of existing data - and is nearby. However, it is
surrounded by dense regions for which far infrared data is essential to obtain
an unbiased view of the star formation process and in particular to establish
whether very young protostars are present. We attempt to identify all Young
Stellar Objects (YSOs), especially those previously undetected at shorter
wavelengths, to derive their physical properties and obtain insight into the
star formation history in this region. We use Herschel-PACS and -SPIRE images
to determine the distribution of YSOs observed in the field. We use a spectral
energy distribution fitting tool to derive the YSOs physical properties.
Herschel-PACS and -SPIRE images confirm the existence of a young source and
allow us to determine its nature as a high-mass (8-10 MSun) Class 0 object
(whose emission is dominated by a massive envelope) towards the massive
condensation 1 observed at (sub)-millimeter wavelengths. This source was not
detected at 24 micron and only barely seen in the MISPGAL 70 micron data.
Several other red sources are detected at Herschel wavelengths and coincide
with the peaks of the millimeter condensations. SED fitting results for the
brightest Herschel sources indicate that, apart from the massive Class 0 that
forms in condensation 1, young low mass stars are forming around RCW 120. The
YSOs observed on the borders of RCW 120 are younger than its ionizing star,
which has an age of about 2.5 Myr.Comment: 5 pqges, 3 figures, accepted by A&A (Special issue on the Herschel
first results
Asymptotic behavior of the density of states on a random lattice
We study the diffusion of a particle on a random lattice with fluctuating
local connectivity of average value q. This model is a basic description of
relaxation processes in random media with geometrical defects. We analyze here
the asymptotic behavior of the eigenvalue distribution for the Laplacian
operator. We found that the localized states outside the mobility band and
observed by Biroli and Monasson (1999, J. Phys. A: Math. Gen. 32 L255), in a
previous numerical analysis, are described by saddle point solutions that
breaks the rotational symmetry of the main action in the real space. The
density of states is characterized asymptotically by a series of peaks with
periodicity 1/q.Comment: 11 pages, 2 figure
Giant Molecular Outflows Powered by Protostars in L1448
We present sensitive, large-scale maps of the CO J=1-0 emission of the L1448
dark cloud. These maps were acquired using the On-The-Fly capability of the
NRAO 12-meter telescope. CO outflow activity is seen in L1448 on parsec-scales
for the first time. Careful comparison of the spatial and velocity distribution
of our high-velocity CO maps with previously published optical and
near-infrared images and spectra has led to the identification of six distinct
CO outflows. We show the direct link between the heretofore unknown, giant,
highly-collimated, protostellar molecular outflows and their previously
discovered, distant optical manifestations. The outflows traced by our CO
mapping generally reach the projected cloud boundaries. Integrated intensity
maps over narrow velocity intervals indicate there is significant overlap of
blue- and red-shifted gas, suggesting the outflows are highly inclined with
respect to the line-of-sight, although the individual outflow position angles
are significantly different. The velocity channel maps also show that the
outflows dominate the CO line cores as well as the high-velocity wings. The
magnitude of the combined flow momenta, as well as the combined kinetic energy
of the flows, are sufficient to disperse the 50 solar mass NH3 cores in which
the protostars are currently forming, although some question remains as to the
exact processes involved in redirecting the directionality of the outflow
momenta to effect the complete dispersal of the parent cloud.Comment: 11 pages, 9 figures, to be published in the Astronomical Journa
Infall, Outflow, Rotation, and Turbulent Motions of Dense Gas within NGC 1333 IRAS 4
Millimeter wavelength observations are presented of NGC 1333 IRAS 4, a group
of highly-embedded young stellar objects in Perseus, that reveal motions of
infall, outflow, rotation, and turbulence in the dense gas around its two
brightest continuum objects, 4A and 4B. These data have finest angular
resolution of approximately 2" (0.0034 pc) and finest velocity resolution of
0.13 km/s. Infall motions are seen from inverse P-Cygni profiles observed in
H2CO 3_12-2_11 toward both objects, but also in CS 3-2 and N2H+ 1-0 toward 4A,
providing the least ambiguous evidence for such motions toward low-mass
protostellar objects. Outflow motions are probed by bright line wings of H2CO
3_12-2_11 and CS 3-2 observed at positions offset from 4A and 4B, likely
tracing dense cavity walls. Rotational motions of dense gas are traced by a
systematic variation of the N2H+ line velocities, and such variations are found
around 4A but not around 4B. Turbulent motions appear reduced with scale, given
N2H+ line widths around both 4A and 4B that are narrower by factors of 2 or 3
than those seen from single-dish observations. Minimum observed line widths of
approximately 0.2 km/s provide a new low, upper bound to the velocity
dispersion of the parent core to IRAS 4, and demonstrate that turbulence within
regions of clustered star formation can be reduced significantly. A third
continuum object in the region, 4B', shows no detectable line emission in any
of the observed molecular species.Comment: LateX, 51 pages, 9 figures, accepted by Ap
Molecular hydrogen jets and outflows in the Serpens south filamentary cloud
We aimed to map the jets and outflows from the Serpens South star forming
region and find an empirical relationship between the magnetic field and
outflow orientation. Near-infrared H2 v=1-0 S(1) 2.122{\mu}m -line imaging of
the \sim 30'-long filamentary shaped Serpens South star forming region was
carried out. K s broadband imaging of the same region was used for continuum
subraction. Candidate driving sources of the mapped jets/outflows are
identified from the list of known protostars and young stars in this region,
which was derived from studies using recent Spitzer and Herschel telescope
observations. 14 Molecular Hydrogen emission-line objects(MHOs) are identified
using our continuum-subtracted images. They are found to constitute ten
individual flows. Out of these, nine flows are located in the
lower-half(southern) part of the Serpens South filament, and one flow is
located at the northern tip of the filament. Four flows are driven by
well-identified Class 0 protostars, while the remaining six flows are driven by
candidate protostars mostly in the Class I stage, based on the Spitzer and
Herschel observations. The orientation of the outflows is systematically
perpendicular to the direction of the near-infrared polarization vector,
recently published in the literature. No significant correlation was observed
between the orientation of the flows and the axis of the filamentary cloud.Comment: Accepted by A&A for publication. 7 pages, 5 figure
- …