102 research outputs found
Hydrodynamic structures of droplets in square micro-channels
This paper reports on numerical simulations of the hydrodynamics inside droplets in rectangular micro-channels. We use a finite-volume/front-capturing method that allows us to perform two- and three-dimensional simulations with a reasonable cost. The numerical method is an interface-capturing technique without any interface reconstruction. Therefore no complex or expensive interface tracking is needed. Droplet interface deformation and velocity fields inside both droplets and continuous phase can then be followed. This study leads to important results about droplet deformation and inner streamlines for mass and heat transfer studies. More particularly, the capillary number seems to have a great influence on the liquid/liquid flow hydrodynamics whatever is the channel width
Volatile signals during pregnancy: A possible chemical basis for mother-infant recognition
Human pheromones play a role in regulating relationships and apparently influence partner choice and mother–infant recognition. We analyzed the chemical content of volatiles from sweat patch samples from the para-axillary and nipple–areola regions of women during pregnancy and after childbirth. Solid phase microextraction was used to extract the volatile compounds, which were then characterized and quantified by gas chromatography–mass spectrometry. During pregnancy, women developed a distinctive pattern of five volatile compounds common to the para-axillary and nipple–areola regions (1-dodecanol, 1-1′-oxybis octane, isocurcumenol, α-hexyl-cinnamic aldehyde, and isopropyl myristate). These compounds were absent outside pregnancy and had slightly different patterns in samples from the two body areas. Differentiation of the volatile patterns among pregnant women may help newborns to distinguish their own mothers
Utilization of Small Commercial Grade Nickel Cadmium (NiCd) Cells in Low Earth Orbit (LEO) Applications
The Defense Advanced Research Projects Agency (DARPA) has sponsored the Advanced Space Technology Program (ASTP) to enhance the cost-effectiveness and responsiveness of military space systems. One of the major themes of this program is the development of highly capable small satellites, generally referred to as \u27\u27LightSats, which can perform selected defense missions at relatively low cost. A key element of the programmatic approach is the utilization of commercial grade parts and practices where practical, as opposed to the much more conservative aerospace grade parts. ASTP has incorporated commercial grade batteries into its first generation LightSats; however, an attempt has been made to study the trade-offs and design considerations to optimally employ these batteries on small satellites. For certain applications, particularly for small relatively inexpensive satellites, commercial grade cells may be a viable alternative to aerospace cells. Differences between aerospace and commercial grade cells range from physical construction and technology incorporated, to the level of quality control in manufacturing. These differences are reflected in both greater cost and increased lead time for the aerospace cells. Our research and experience suggest that certain manufacturing technologies are preferable when considering commercial cells for space applications. Once the cell type is chosen, candidate cells must be thoroughly screened to insure survival and acceptable performance in the space environment. To insure optimal performance, cells should be rigorously matched in electrical characteristics when forming batteries. Test procedures should be tailored to fit the application in order to yield the best performance in a specific physical, electrical, and operational environment. An acceptance test plan for screening and matching cells is discussed. The present paper is the first in a series of reports which will document the approach, results, and lessons learned from ASTP\u27s commercial battery studies
Creating the Future of Microspace Technology
The Advanced Space Technology Program (ASTP) at the Defense Advanced Research Projects Agency (DARPA) has recently initiated a series of technology development efforts as part of its drive to enhance the cost effectiveness and responsiveness of defense space systems. These efforts focus on reducing spacecraft size, cost, weight, and power consumption, while simultaneously improving performance. The technology initiatives which are underway span a broad spectrum of efforts at the satellite system and subsystem levels, as well as some which focus on individual components and materials. The technology initiatives which DARPA is pursuing will enhance large, major satellites via technology insertions of cost effective, leading edge technologies in a timely fashion, and will facilitate a new class of small highly capable satellites. This paper will highlight some of the new efforts which have been initiated by ASTP in the past year
Applications of Small Satellites for Defense Space Communication Systems and Technology Development: Pegasus Flight-2 and the Launch of Microsat
DARPA\u27s seven Microsats were placed into orbit on the second flight of the Pegasus. The Microsat program objective is to assess the tactical utility of small, low-cost communications satellites. This paper describes the changes made to the Pegasus since its first flight, provides an overview of the Microsat demonstration program, and outlines the preliminary results of the Pegasus launch. Finally, the near-term Army and Navy demonstration plans for Microsat are discussed
Columnar Cell Lesion and Apocrine Hyperplasia of the Breast: Is There a Common Origin? The Role of Prolactin-induced Protein
Noninvasive breast lesions encompass a heterogeneous group of risk indicators and nonobligate precursors of breast cancer, such as apocrine hyperplasia (AH) and columnar cell lesions (CCLs). Given the different expression of ER and ER-regulated genes in AH and CCL, these two alterations are currently considered discrete conditions. However, whether they share early biologic changes is not clear to date. Here, we sought to define the clinicopathologic and immunohistochemical features of a prospective series of combined lesions made up by CCLs and AH forming a continuum within single terminal duct-lobular units. The study group included 19 cases, whereas 25 cases of synchronous contiguous CCLs and AH served as control group. The different components of each case were subjected to immunohistochemical analysis for ER, PR, AR, HER2, BCL2, CCND1, MUC1, and PIP. Although CCLs and AHs arising in continuity showed opposite patterns of ER expression, the PIP-positive apocrine signature was consistently present in both components. In conclusion, apocrine changes are highly recurrent in CCLs growing within foci of AH, regardless of the ER activation. Our results suggest that PIP-positive and PIP-negative CCLs are likely to represent biologically distinct conditions and that apocrine changes might occur earlier than ER activation in the natural history of breast precursor lesions
Association between red cell distribution width and response to methotrexate in rheumatoid arthritis
Red cell distribution width (RDW) is an unconventional biomarker of inflammation. We aimed to explore its role as a predictor of treatment response in rheumatoid arthritis (RA). Eighty-two RA patients (55 females), median age [interquartile range] 63 years [52-69], were selected by scanning the medical records of a rheumatology clinic, to analyze the associations between baseline RDW, disease activity scores and inflammatory markers, as well as the relationship between RDW changes following methotrexate (MTX) and treatment response. The lower the median baseline RDW, the greater were the chances of a positive EULAR response at three months, 13.5% [13.0-14.4] being among those with good response, vs 14.0% [13.2-14.7] and 14.2% [13.5- 16.0] (p=0.009) among those with moderate and poor response, respectively. MTX treatment was followed by a significant RDW increase (p<0.0001). The increase of RDW was greater among patients with good EULAR response, becoming progressively smaller in cases with moderate and poor response (1.0% [0.4-1.4] vs. 0.7 [0.1-2.0] vs. 0.3 [-0.1-0.8]; p=0.03). RDW is a strong predictor of early response to MTX in RA. RDW significantly increases after MTX initiation in parallel to treatment response, suggesting a role as a marker of MTX effectiveness
- …