6,188 research outputs found

    GASTOF: Ultra-fast ToF forward detector for exclusive processes at the LHC

    Get PDF
    GASTOF (Gas Time-of-Flight) detector is a Cherenkov detector proposed for very precise (10--20 ps) arrival time measurements of forward protons at some 420 m from the central detectors of CMS and ATLAS. Such an excellent time resolution will allow by z-by-timing technique for precise measurement of the z-coordinate of the event vertex in exclusive production at the LHC, when two colliding protons are scattered at very small angles. In the paper we present first GASTOF prototype, simulations of its performance as well as first tests using a cosmic muon telescope.Comment: 6 pages, 3 figures, presented at the conference ''Physics at LHC'', Krakow, June 200

    Complexity of token swapping and its variants

    Get PDF
    AbstractIn the Token Swapping problem we are given a graph with a token placed on each vertex. Each token has exactly one destination vertex, and we try to move all the tokens to their destinations, using the minimum number of swaps, i.e., operations of exchanging the tokens on two adjacent vertices. As the main result of this paper, we show that Token Swapping is W[1]-hard parameterized by the length k of a shortest sequence of swaps. In fact, we prove that, for any computable function f, it cannot be solved in time f(k)no(k/logk) where n is the number of vertices of the input graph, unless the ETH fails. This lower bound almost matches the trivial nO(k)-time algorithm. We also consider two generalizations of the Token Swapping, namely Colored Token Swapping (where the tokens have colors and tokens of the same color are indistinguishable), and Subset Token Swapping (where each token has a set of possible destinations). To complement the hardness result, we prove that even the most general variant, Subset Token Swapping, is FPT in nowhere-dense graph classes. Finally, we consider the complexities of all three problems in very restricted classes of graphs: graphs of bounded treewidth and diameter, stars, cliques, and paths, trying to identify the borderlines between polynomial and NP-hard cases

    Two new intermediate polars with a soft X-ray component

    Get PDF
    Aims. We analyze the first X-ray observations with XMM-Newton of 1RXS J070407.9+262501 and 1RXS 180340.0+401214, in order to characterize their broad-band temporal and spectral properties, also in the UV/optical domain, and to confirm them as intermediate polars. Methods. For both objects, we performed a timing analysis of the X-ray and UV/optical light curves to detect the white dwarf spin pulsations and study their energy dependence. For 1RXS 180340.0+401214 we also analyzed optical spectroscopic data to determine the orbital period. X-ray spectra were analyzed in the 0.2–10.0 keV range to characterize the emission properties of both sources. Results. We find that the X-ray light curves of both systems are energy dependent and are dominated, below 3–5 keV, by strong pulsations at the white dwarf rotational periods (480 s for 1RXS J070407.9+262501 and 1520.5 s for 1RXS 180340.0+401214). In 1RXS 180340.0+401214 we also detect an X-ray beat variability at 1697 s which, together with our new optical spectroscopy, favours an orbital period of 4.4 h that is longer than previously estimated. Both systems show complex spectra with a hard (temperature up to 40 keV) optically thin and a soft (kT ∼ 85–100 eV) optically thick components heavily absorbed by material partially covering the X-ray sources. Conclusions. Our observations confirm the two systems as intermediate polars and also add them as new members of the growing group of “soft” systems which show the presence of a soft X-ray blackbody component. Differences in the temperatures of the blackbodies are qualitatively explained in terms of reprocessing over different sizes of the white dwarf spot. We suggest that systems showing cooler soft X-ray blackbody components also possess white dwarfs irradiated by cyclotron radiation

    Sensitivity analysis for shape perturbation of cavity or internal crack using BIE and adjoint variable approach

    No full text
    This paper deals with the application of the adjoint variable approach to sensitivity analysis of objective functions used for defect detection from knowledge of supplementary boundary data, in connection with the use of BIE/BEM formulations for the relevant forward problem. The main objective is to establish expressions for crack shape sensitivity, based on the adjoint variable approach, that are suitable for BEM implementation. In order to do so, it is useful to consider first the case of a cavity defect, for which such boundary-only sensitivity expressions are obtained for general initial geometry and shape perturbations. The analysis made in the cavity defect case is then seen to break down in the limiting case of a crack. However, a closer analysis reveals that sensitivity formulas suitable for BEM implementation can still be established. First, particular sensitivity formulas are obtained for special shape transformations (translation, rotation or expansion of the crack) for either two- or three-dimensional geometries which, except for the case of crack expansion together with dynamical governing equations, are made only of surface integrals (three-dimensional geometries) or line integrals (two-dimensional geometries). Next, arbitrary shape transformations are accommodated by using an additive decomposition of the transformation velocity over a tubular neighbourhood of the crack front, which leads to sensitivity formulas. This leads to sensitivity formulas involving integrals on the crack, the tubular neighbourhood and its boundary. Finally, the limiting case of the latter results when the tubular neighbourhood shrinks around the crack front is shown to yield a sensitivity formula involving the stress intensity factors of both the forward and the adjoint solutions. Classical path-independent integrals are recovered as special cases. The main exposition is done in connection with the scalar transient wave equation. The results are then extended to the linear time-domain elastodynamics framework. Linear static governing equations are contained as obvious special cases. Numerical results for crack shape sensitivity computation are presented for two-dimensional time-domain elastodynamics

    Vietoris hyperspaces of scattered Priestley spaces

    Full text link
    We study Vietoris hyperspaces of closed and closed final sets of Priestley spaces. We are particularly interested in Skula topologies. A topological space is \emph{Skula} if its topology is generated by differences of open sets of another topology. A compact Skula space is scattered and moreover has a natural well-founded ordering compatible with the topology, namely, it is a Priestley space. One of our main objectives is investigating Vietoris hyperspaces of general Priestley spaces, addressing the question when their topologies are Skula and computing the associated ordinal ranks. We apply our results to scattered compact spaces based on certain almost disjoint families, in particular, Lusin families and ladder systems.Comment: Minor corrections, added some comments. Final version (30 pages

    Time-approximation trade-offs for inapproximable problems

    Get PDF
    In this paper we focus on problems which do not admit a constant-factor approximation in polynomial time and explore how quickly their approximability improves as the allowed running time is gradually increased from polynomial to (sub-)exponential. We tackle a number of problems: For Min Independent Dominating Set, Max Induced Path, Forest and Tree, for any r(n), a simple, known scheme gives an approximation ratio of r in time roughly rn/r. We show that, for most values of r, if this running time could be significantly improved the ETH would fail. For Max Minimal Vertex Cover we give a nontrivial √r-approximation in time 2n/r. We match this with a similarly tight result. We also give a log r-approximation for Min ATSP in time 2n/r and an r-approximation for Max Grundy Coloring in time rn/r. Furthermore, we show that Min Set Cover exhibits a curious behavior in this superpolynomial setting: for any δ > 0 it admits an mδ-approximation, where m is the number of sets, in just quasi-polynomial time. We observe that if such ratios could be achieved in polynomial time, the ETH or the Projection Games Conjecture would fail. © Édouard Bonnet, Michael Lampis and Vangelis Th. Paschos; licensed under Creative Commons License CC-BY

    Scaling behavior of the overlap quark propagator in Landau gauge

    Get PDF
    The properties of the momentum space quark propagator in Landau gauge are examined for the overlap quark action in quenched lattice QCD. Numerical calculations are done on three lattices with different lattice spacings and similar physical volumes to explore the approach of the quark propagator toward the continuum limit. We have calculated the nonperturbative momentum-dependent wave function renormalization function Z(p) and the nonperturbative mass function M(p) for a variety of bare quark masses and perform an extrapolation to the chiral limit. We find the behavior of Z(p) and M(p) are in reasonable agreement between the two finer lattices in the chiral limit, however the data suggest that an even finer lattice is desirable. The large momentum behavior is examined to determine the quark condensate.Comment: 9 pages, 5 figures, Revtex 4. Streamlined presentation, additional data. Final versio

    Multi-scale acoustics of partially open cell poroelastic foams

    Get PDF
    International audienceThe present paper reports on the modeling of linear elastic properties of acoustically insulating foams with unit cells containing solid films or membranes at the junction between interconnected pores from a numerical homogenization technique. It combines fluid-flow induced microstructure identification with simulations of the effective Young's modulus and Poisson ratio from a mixture of routinely available laboratory measurements (porosity, permeability, cell size) and finite element calculations when the boundary conditions of the periodic unit cell take particular symmetric forms. This combination results in microstructural determination of the macroscopic coefficients entering into the Biot-Allard theory of wave propagation and dissipation through porous media. Precise control over pore morphology and mechanical properties of the base material renders this multi-scale approach particularly suitable for various advanced applications

    The peculiar source XSS J12270-4859: a LMXB detected by FERMI ?

    Full text link
    The X-ray source XSS J12270-4859 has been first suggested to be a magnetic cataclysmic variable of Intermediate Polar type on the basis of its optical spectrum and a possible 860 s X-ray periodicity. However further X-ray observations by the Suzaku and XMM-Newton satellites did not confirm this periodicity but show a very peculiar variability, including moderate repetitive flares and numerous absorption dips. These characteristics together with a suspected 4.3 h orbital period would suggest a possible link with the so- called "dipping sources", a sub-class of Low-Mass X-ray Binaries (LMXB). Based on the released FERMI catalogues, the source was also found coincident with a very high energy (0.1-300 GeV) VHE source 2FGL J1227.7-4853. The good positional coincidence, together with the lack of any other bright X-ray sources in the field, makes this identification highly probable. However, none of the other standard LMXBs have been so far detected by FERMI. Most galactic VHE sources are associated with rotation-powered pulsars. We present here new results obtained from a 30 ksec high-time resolution XMM observations in January 2011 that confirm the flaring-dipping behaviour and provide upper limits on fast X-ray pulsations. We discuss the possible association of the source with either a microquasar or an accreting rotation powered pulsar.Comment: To appear in the Proceedings of "The Golden Age of Cataclysmic Variables (Palermo 2011)", in Mem. Soc. Astron. It. (4 pages, 2 figures

    Effect of defects on thermal denaturation of DNA Oligomers

    Full text link
    The effect of defects on the melting profile of short heterogeneous DNA chains are calculated using the Peyrard-Bishop Hamiltonian. The on-site potential on a defect site is represented by a potential which has only the short-range repulsion and the flat part without well of the Morse potential. The stacking energy between the two neigbouring pairs involving a defect site is also modified. The results are found to be in good agreement with the experiments.Comment: 11 pages including 5 postscript figure; To be appear in Phys. Rev.
    corecore