1,183 research outputs found

    Gravitational fragmentation and the formation of brown dwarfs in stellar clusters

    Full text link
    We investigate the formation of brown dwarfs and very low-mass stars through the gravitational fragmentation of infalling gas into stellar clusters. The gravitational potential of a forming stellar cluster provides the focus that attracts gas from the surrounding molecular cloud. Structures present in the gas grow, forming filaments flowing into the cluster centre. These filaments attain high gas densities due to the combination of the cluster potential and local self-gravity. The resultant Jeans masses are low, allowing the formation of very low-mass fragments. The tidal shear and high velocity dispersion present in the cluster preclude any subsequent accretion thus resulting in the formation of brown dwarfs or very low-mass stars. Ejections are not required as the brown dwarfs enter the cluster with high relative velocities, suggesting that their disc and binary properties should be similar to that of low-mass stars. This mechanism requires the presence of a strong gravitational potential due to the stellar cluster implying that brown dwarf formation should be more frequent in stellar clusters than in distributed populations of young stars. Brown dwarfs formed in isolation would require another formation mechanism such as due to turbulent fragmentation.Comment: 8 pages, 7 figures. MNRAS, in pres

    Massive star formation: Nurture, not nature

    Full text link
    We investigate the physical processes which lead to the formation of massive stars. Using a numerical simulation of the formation of a stellar cluster from a turbulent molecular cloud, we evaluate the relevant contributions of fragmentation and competitive accretion in determining the masses of the more massive stars. We find no correlation between the final mass of a massive star, and the mass of the clump from which it forms. Instead, we find that the bulk of the mass of massive stars comes from subsequent competitive accretion in a clustered environment. In fact, the majority of this mass infalls onto a pre-existing stellar cluster. Furthermore, the mass of the most massive star in a system increases as the system grows in numbers of stars and in total mass. This arises as the infalling gas is accompanied by newly formed stars, resulting in a larger cluster around a more massive star. High-mass stars gain mass as they gain companions, implying a direct causal relationship between the cluster formation process, and the formation of higher-mass stars therein.Comment: 8 pages, accepted for publication in MNRAS. Version including hi-res colour postscript figure available at http://star-www.st-and.ac.uk/~sgv/ps/massnurt.ps.g

    The formation of close binary systems

    Full text link
    A viable solution to the origin of close binary systems, unaccounted for in recent theories, is presented. Fragmentation, occurring at the end of the secondary collapse phase (during which molecular hydrogen is dissociating), can form binary systems with separations less than 1 au. Two fragmentation modes are found to occur after the collapse is halted. The first consists of the fragmentation of a protostellar disc due to rotational instabilities in a protostellar core, involving both an m=1m=1 and an m=2m=2 mode. This fragmentation mechanism is found to be insensitive to the initial density distribution: it can occur in both centrally condensed and uniform initial conditions. The second fragmentation mode involves the formation of a rapidly rotating core at the end of the collapse phase which is unstable to the axisymmetric perturbations. This core bounces into a ring which quickly fragments into several components. The binary systems thus formed contain less than 1 per cent of a solar mass and therefore will need to accrete most of their final mass if they are to form a binary star system. Their orbital properties will thus be determined by the properties of the accreted matter.Comment: 6 pages, uuencoded compressed postscript file (containing 2 figures

    The Origin of the Initial Mass Function and Its Dependence on the Mean Jeans Mass in Molecular Clouds

    Full text link
    We investigate the dependence of stellar properties on the mean thermal Jeans mass in molecular clouds. We compare the results from the two largest hydrodynamical simulations of star formation to resolve the fragmentation process down to the opacity limit, the first of which was reported by Bate, Bonnell & Bromm. The initial conditions of the two calculations are identical except for the radii of the clouds, which are chosen so that the mean densities and mean thermal Jeans masses of the clouds differ by factors of nine and three, respectively. We find that the denser cloud, with the lower mean thermal Jeans mass, produces a higher proportion of brown dwarfs and has a lower characteristic (median) mass of the stars and brown dwarfs. This dependence of the initial mass function (IMF) on the density of the cloud may explain the observation that the Taurus star-forming region appears to be deficient in brown dwarfs when compared with the Orion Trapezium cluster. The new calculation also produces wide binaries (separations >20 AU), one of which is a wide binary brown dwarf system. Based on the hydrodynamical calculations, we develop a simple accretion/ejection model for the origin of the IMF. In the model, all stars and brown dwarfs begin with the same mass (set by the opacity limit for fragmentation) and grow in mass until their accretion is terminated stochastically by their ejection from the cloud through dynamically interactions. The model predicts that the main variation of the IMF in different star-forming environments should be in the location of the peak (due to variations in the mean thermal Jeans mass of the cloud) and in the substellar regime. However, the slope of the IMF at high-masses may depend on the dispersion in the accretion rates of protostars.Comment: 22 pages, 14 figures, accepted for publication in MNRAS. Paper with high-resolution figures and animations available from http://www.astro.ex.ac.uk/people/mbate/ Replacement removes inconsistent definitions of base 10 logarithm

    The Formation of Close Binary Systems by Dynamical Interactions and Orbital Decay

    Get PDF
    We present results from the first hydrodynamical star formation calculation to demonstrate that close binary stellar systems (separations \lsim 10 AU) need not be formed directly by fragmentation. Instead, a high frequency of close binaries can be produced through a combination of dynamical interactions in unstable multiple systems and the orbital decay of initially wider binaries. Orbital decay may occur due to gas accretion and/or the interaction of a binary with its circumbinary disc. These three mechanisms avoid the problems associated with the fragmentation of optically-thick gas to form close systems directly. They also result in a preference for close binaries to have roughly equal-mass components because dynamical exchange interactions and the accretion of gas with high specific angular momentum drive mass ratios towards unity. Furthermore, due to the importance of dynamical interactions, we find that stars with greater masses ought to have a higher frequency of close companions, and that many close binaries ought to have wide companions. These properties are in good agreement with the results of observational surveys.Comment: Published in MNRAS, 10 pages, 6 figures (5 degraded). Paper with high-resolution figures and animations available from http://www.astro.ex.ac.uk/people/mbat

    The efficiency of star formation in clustered and distributed regions

    Full text link
    We investigate the formation of both clustered and distributed populations of young stars in a single molecular cloud. We present a numerical simulation of a 10,000 solar mass elongated, turbulent, molecular cloud and the formation of over 2500 stars. The stars form both in stellar clusters and in a distributed mode which is determined by the local gravitational binding of the cloud. A density gradient along the major axis of the cloud produces bound regions that form stellar clusters and unbound regions that form a more distributed population. The initial mass function also depends on the local gravitational binding of the cloud with bound regions forming full IMFs whereas in the unbound, distributed regions the stellar masses cluster around the local Jeans mass and lack both the high-mass and the low-mass stars. The overall efficiency of star formation is ~ 15 % in the cloud when the calculation is terminated, but varies from less than 1 % in the the regions of distributed star formation to ~ 40 % in regions containing large stellar clusters. Considering that large scale surveys are likely to catch clouds at all evolutionary stages, estimates of the (time-averaged) star formation efficiency for the giant molecular cloud reported here is only ~ 4 %. This would lead to the erroneous conclusion of 'slow' star formation when in fact it is occurring on a dynamical timescale.Comment: 9 pages, 8 figures, MNRAS in pres

    The Formation Mechanism of Brown Dwarfs

    Full text link
    We present results from the first hydrodynamical star formation calculation to demonstrate that brown dwarfs are a natural and frequent product of the collapse and fragmentation of a turbulent molecular cloud. The brown dwarfs form via the fragmentation of dense molecular gas in unstable multiple systems and are ejected from the dense gas before they have been able to accrete to stellar masses. Thus, they can be viewed as `failed stars'. Approximately three quarters of the brown dwarfs form in gravitationally-unstable circumstellar discs while the remainder form in collapsing filaments of molecular gas. These formation mechanisms are very efficient, producing roughly the same number of brown dwarfs as stars, in agreement with recent observations. However, because close dynamical interactions are involved in their formation, we find a very low frequency of binary brown dwarf systems (\lsim 5%) and that those binary brown dwarf systems that do exist must be close \lsim 10 AU. Similarly, we find that young brown dwarfs with large circumstellar discs (radii \gsim 10 AU) are rare (5\approx 5%).Comment: 5 pages, 2 GIF figures, postscript with figures available at http://www.astro.ex.ac.uk/people/mbat

    The hierarchical formation of a stellar cluster

    Full text link
    Recent surveys of star forming regions have shown that most stars, and probably all massive stars, are born in dense stellar clusters. The mechanism by which a molecular cloud fragments to form several hundred to thousands of individual stars has remained elusive. Here, we use a numerical simulation to follow the fragmentation of a turbulent molecular cloud and the subsequent formation and early evolution of a stellar cluster containing more than 400 stars. We show that the stellar cluster forms through the hierarchical fragmentation of a turbulent molecular cloud. This leads to the formation of many small subclusters which interact and merge to form the final stellar cluster. The hierarchical nature of the cluster formation has serious implications in terms of the properties of the new-born stars. The higher number-density of stars in subclusters, compared to a more uniform distribution arising from a monolithic formation, results in closer and more frequent dynamical interactions. Such close interactions can truncate circumstellar discs, harden existing binaries, and potentially liberate a population of planets. We estimate that at least one-third of all stars, and most massive stars, suffer such disruptive interactions.Comment: 6 pages, 4 figures, accepted for publication in MNRAS. Version including hi-res colour postscript figure available at http://star-www.st-and.ac.uk/~sgv/ps/clufhier.ps.g
    corecore