45 research outputs found

    On the Role of Disks in the Formation of Stellar Systems: A Numerical Parameter Study of Rapid Accretion

    Full text link
    We study rapidly accreting, gravitationally unstable disks with a series of global, three dimensional, numerical experiments using the code ORION. In this paper we conduct a numerical parameter study focused on protostellar disks, and show that one can predict disk behavior and the multiplicity of the accreting star system as a function of two dimensionless parameters which compare the disk's accretion rate to its sound speed and orbital period. Although gravitational instabilities become strong, we find that fragmentation into binary or multiple systems occurs only when material falls in several times more rapidly than the canonical isothermal limit. The disk-to-star accretion rate is proportional to the infall rate, and governed by gravitational torques generated by low-m spiral modes. We also confirm the existence of a maximum stable disk mass: disks that exceed ~50% of the total system mass are subject to fragmentation and the subsequent formation of binary companions.Comment: 16 pages, 12 figures, submitte

    N-Body Simulations of Compact Young Clusters near the Galactic Center

    Get PDF
    We investigate the dynamical evolution of compact young star clusters (CYCs) near the Galactic center (GC) using Aarseth's Nbody6 codes. The relatively small number of stars in the cluster (5,000-20,000) makes real-number N-body simulations for these clusters feasible on current workstations. Using Fokker-Planck (F-P) models, Kim, Morris, & Lee (1999) have made a survey of cluster lifetimes for various initial conditions, and have found that clusters with a mass <~ 2x10^4 Msun evaporate in ~10 Myr. These results were, however, to be confirmed by N-body simulations because some extreme cluster conditions, such as strong tidal forces and a large stellar mass range participating in the dynamical evolution, might violate assumptions made in F-P models. Here we find that, in most cases, the CYC lifetimes of previous F-P calculations are 5-30% shorter than those from the present N-body simulations. The comparison of projected number density profiles and stellar mass functions between N-body simulations and HST/NICMOS observations by Figer et al. (1999) suggests that the current tidal radius of the Arches cluster is ~1.0 pc, and the following parameters for the initial conditions of that cluster: total mass of 2x10^4 Msun and mass function slope for intermediate-to-massive stars of 1.75 (the Salpeter function has 2.35). We also find that the lower stellar mass limit, the presence of primordial binaries, the amount of initial mass segregation, and the choice of initial density profile (King or Plummer models) do not significantly affect the dynamical evolution of CYCs.Comment: 20 pages including 6 figures, To appear in ApJ, Dec 20 issu

    The effect of completeness of revascularization during CABG with single versus multiple arterial grafts

    Full text link
    IntroductionIncomplete coronary revascularization is associated with suboptimal outcomes. We investigated the longâ term effects of Incomplete, Complete, and Supraâ complete revascularization and whether these effects differed in the setting of singleâ arterial and multiâ arterial coronary artery bypass graft (CABG).MethodsWe analyzed 15â year mortality in 7157 CABG patients (64.1â ±â 10.5 years; 30% women). All patients received a left internal thoracic artery to left anterior descending coronary artery graft with additional venous grafts only (singleâ arterial) or with at least one additional arterial graft (multiâ arterial) and were grouped based on a completeness of revascularization index (CRIâ =â number of grafts minus the number of diseased principal coronary arteries): Incomplete (CRIâ â ¤â â 1 [Nâ =â 320;4.5%]); Complete (CRIâ =â 0 [Nâ =â 2882;40.3%]; reference group); and two Supraâ complete categories (CRIâ =â +1[Nâ =â 3050; 42.6%]; CRIâ â ¥â +â 2 [Nâ =â 905; 12.6%]). Riskâ adjusted mortality hazard ratios (AHR) were calculated using comprehensive propensity score adjustment by Cox regression.ResultsIncomplete revascularization was rare (4.5%) but associated with increased mortality in all patients (AHR [95% confidence interval]â =â 1.53 [1.29â 1.80]), those undergoing singleâ arterial CABG (AHRâ =â 1.27 [1.04â 1.54]) and multiâ arterial CABG (AHRâ =â 2.18 [1.60â 2.99]), as well as in patients with 3â Vessel (AHRâ =â 1.37 [1.16â 1.62]) and, to a lesser degree, with 2â Vessel (AHRâ =â 1.67 [0.53â 5.23]) coronary disease. Supraâ complete revascularization was generally associated with incrementally decreased mortality in all patients (AHR [CRIâ =â +1]â =â 0.94 [0.87â 1.03]); AHR [CRIâ â ¥â +2]â =â 0.74 [0.64â 0.85]), and was driven by a significantly decreased mortality risk in singleâ arterial CABG (AHR [CRIâ =â +1]â =â 0.90 [0.81â 0.99]; AHR [CRIâ â ¥â +2]â =â 0.64 [0.53â 0.78]); and 3â Vessel disease patients (AHR [CRIâ =â +1]â =â 0.94 [0.86â 1.04]; and AHR [CRIâ â ¥â +2]â =â 0.75 [0.63â 0.88]) with no impact in multiâ arterial CABG (AHR [CRIâ =â +1]â =â 1.07 [0.91â 1.26]; AHR [CRIâ â ¥â +2]â =â 0.93 [0.73â 1.17]).ConclusionsIncomplete revascularization is associated with decreased late survival, irrespective of grafting strategy. Alternatively, supraâ complete revascularization is associated with improved survival in patients with 3â Vessel CAD, and in singleâ arterial but not multiâ arterial CABG.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146364/1/jocs13810.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146364/2/jocs13810_am.pd

    Diaphragm Abnormalities in Patients with End-Stage Heart Failure: NADPH Oxidase Upregulation and Protein Oxidation

    Get PDF
    Patients with heart failure (HF) have diaphragm abnormalities that contribute to disease morbidity and mortality. Studies in animals suggest that reactive oxygen species (ROS) cause diaphragm abnormalities in HF. However, the effects of HF on ROS sources, antioxidant enzymes, and protein oxidation in the diaphragm of humans is unknown. NAD(P)H oxidase, especially the Nox2 isoform, is an important source of ROS in the diaphragm. Our main hypothesis was that diaphragm from patients with HF have heightened Nox2 expression and p47phox phosphorylation (marker of enzyme activation) that is associated with elevated protein oxidation. We collected diaphragm biopsies from patients with HF and brain-dead organ donors (controls). Diaphragm mRNA levels of Nox2 subunits were increased 2.5–4.6-fold over controls (p \u3c 0.05). Patients also had increased protein levels of Nox2 subunits (p47phox, p22phox, and p67phox) and total p47phox phosphorylation, while phospho-to-total p47phox levels were unchanged. The antioxidant enzyme catalase was increased in patients, whereas glutathione peroxidase and superoxide dismutases were unchanged. Among markers of protein oxidation, carbonyls were increased by ~40% (p \u3c 0.05) and 4-hydroxynonenal and 3-nitrotyrosines were unchanged in patients with HF. Overall, our findings suggest that Nox2 is an important source of ROS in the diaphragm of patients with HF and increases in levels of antioxidant enzymes are not sufficient to maintain normal redox homeostasis. The net outcome is elevated diaphragm protein oxidation that has been shown to cause weakness in animals

    Near real-time detection of low-frequency baleen whale calls from an autonomous surface vehicle: implementation, evaluation, and remaining challenges

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baumgartner, M. F., Ball, K., Partan, J., Pelletier, L., Bonnell, J., Hotchkin, C., Corkeron, P. J., & Van Parijs, S. M. Near real-time detection of low-frequency baleen whale calls from an autonomous surface vehicle: implementation, evaluation, and remaining challenges. Journal of the Acoustical Society of America, 149(5), (2021): 2950-2962, https://doi.org/10.1121/10.0004817.Mitigation of threats posed to marine mammals by human activities can be greatly improved with a better understanding of animal occurrence in real time. Recent advancements have enabled low-power passive acoustic systems to be integrated into long-endurance autonomous platforms for persistent near real-time monitoring of marine mammals via the sounds they produce. Here, the integration of a passive acoustic instrument capable of real-time detection and classification of low-frequency (LF) tonal sounds with a Liquid Robotics wave glider is reported. The goal of the integration was to enable monitoring of LF calls produced by baleen whales over periods of several months. Mechanical noises produced by the platform were significantly reduced by lubricating moving parts with polytetrafluoroethylene, incorporating rubber and springs to decelerate moving parts and shock mounting hydrophones. Flow noise was reduced with the development of a 21-element hydrophone array. Surface noise produced by breaking waves was not mitigated despite experimentation with baffles. Compared to a well-characterized moored passive acoustic monitoring buoy, the system greatly underestimated the occurrence of sei, fin, and North Atlantic right whales during a 37-d deployment, and therefore is not suitable in its current configuration for use in scientific or management applications for these species at this time.Funding for this project was provided by the Environmental Security Technology Certification Program of the U.S. Department of Defense and the U.S. Navy's Living Marine Resources Program

    Bondi-Hoyle Accretion in a Turbulent Medium

    Full text link
    The Bondi-Hoyle formula gives the approximate accretion rate onto a point particle accreting from a uniform medium. However, in many situations accretion onto point particles occurs from media that are turbulent rather than uniform. In this paper, we give an approximate solution to the problem of a point particle accreting from an ambient medium of supersonically turbulent gas. Accretion in such media is bimodal, at some points resembling classical Bondi-Hoyle flow, and in other cases being closer to the vorticity-dominated accretion flows recently studied by Krumholz, McKee, & Klein. Based on this observation, we develop a theoretical prediction for the accretion rate, and confirm that our predictions are highly consistent with the results of numerical simulations. The distribution of accretion rates is lognormal, and the mean accretion rate in supersonically turbulent gas can be substantially enhanced above the value that would be predicted by a naive application of the Bondi-Hoyle formula. However, it can also be suppressed by the vorticity, just as Krumholz, McKee, & Klein found for non-supersonic vorticity-dominated flows. Magnetic fields, which we have not included in these models, may further inhibit accretion. Our results have significant implications for a number astrophysical problems, ranging from star formation to the black holes in galactic centers. In particular, there are likely to be significant errors in results that assume that accretion from turbulent media occurs at the unmodified Bondi-Hoyle rate, or that are based on simulations that do not resolve the Bondi-Hoyle radius of accreting objects.Comment: Accepted for publication in ApJ; 13 pages, 9 figures, emulateap

    The Formation of Low-Mass Binary Star Systems Via Turbulent Fragmentation

    Full text link
    We characterize the infall rate onto protostellar systems forming in self-gravitating radiation-hydrodynamic simulations. Using two dimensionless parameters to determine disks' susceptability to gravitational fragmentation, we infer limits on protostellar system multiplicity and the mechanism of binary formation. We show that these parameters give robust predictions even in the case of marginally resolved protostellar disks. We find that protostellar systems with radiation feedback predominately form binaries via turbulent fragmentation, not disk instability, and we predict turbulent fragmentation is the dominant channel for binary formation for low-mass stars. We clearly demonstrate that systems forming in simulations including radiative feedback have fundamentally different parameters than those in purely hydrodynamic simulations.Comment: 11 pages, 10 figures, accepted to Ap

    Bondi Accretion in the Presence of Vorticity

    Full text link
    The classical Bondi-Hoyle formula gives the accretion rate onto a point particle of a gas with a uniform density and velocity. However, the Bondi-Hoyle problem considers only gas with no net vorticity, while in a real astrophysical situation accreting gas invariably has at least a small amount of vorticity. We therefore consider the related case of accretion of gas with constant vorticity, for the cases of both small and large vorticity. We confirm the findings of earlier two dimensional simulations that even a small amount of vorticity can substantially change both the accretion rate and the morphology of the gas flow lines. We show that in three dimensions the resulting flow field is non-axisymmetric and time dependent. The reduction in accretion rate is due to an accumulation of circulation near the accreting particle. Using a combination of simulations and analytic treatment, we provide an approximate formula for the accretion rate of gas onto a point particle as a function of the vorticity of the surrounding gas.Comment: 34 pages, 10 figures, accepted for publication in Ap

    New Approach Methodologies for the Endocrine Activity Toolbox: Environmental Assessment for Fish and Amphibians

    Get PDF
    Multiple in vivo test guidelines focusing on the estrogen, androgen, thyroid, and steroidogenesis pathways have been developed and validated for mammals, amphibians, or fish. However, these tests are resource-intensive and often use a large number of laboratory animals. Developing alternatives for in vivo tests is consistent with the replacement, reduction, and refinement principles for animal welfare considerations, which are supported by increasing mandates to move toward an “animal-free” testing paradigm worldwide. New approach methodologies (NAMs) hold great promise to identify molecular, cellular, and tissue changes that can be used to predict effects reliably and more efficiently at the individual level (and potentially on populations) while reducing the number of animals used in (eco)toxicological testing for endocrine disruption. In a collaborative effort, experts from government, academia, and industry met in 2020 to discuss the current challenges of testing for endocrine activity assessment for fish and amphibians. Continuing this cross-sector initiative, our review focuses on the current state of the science regarding the use of NAMs to identify chemical-induced endocrine effects. The present study highlights the challenges of using NAMs for safety assessment and what work is needed to reduce their uncertainties and increase their acceptance in regulatory processes. We have reviewed the current NAMs available for endocrine activity assessment including in silico, in vitro, and eleutheroembryo models. New approach methodologies can be integrated as part of a weight-of-evidence approach for hazard or risk assessment using the adverse outcome pathway framework. The development and utilization of NAMs not only allows for replacement, reduction, and refinement of animal testing but can also provide robust and fit-for-purpose methods to identify chemicals acting via endocrine mechanisms.publishedVersio
    corecore