319 research outputs found

    Low-frequency ocean ambient noise on the Chukchi Shelf in the changing Arctic

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bonnel, J., Kinda, G. B., & Zitterbart, D. P. Low-frequency ocean ambient noise on the Chukchi Shelf in the changing Arctic. Journal of the Acoustical Society of America, 149(6), (2021): 4061–4072, https://doi.org/10.1121/10.0005135.This article presents the study of a passive acoustic dataset recorded on the Chukchi Shelf from October 2016 to July 2017 during the Canada Basin Acoustic Propagation Experiment (CANAPE). The study focuses on the low-frequency (250–350 Hz) ambient noise (after individual transient signals are removed) and its environmental drivers. A specificity of the experimental area is the Beaufort Duct, a persistent warm layer intrusion of variable extent created by climate change, which favors long-range acoustic propagation. The Chukchi Shelf ambient noise shows traditional polar features: it is quieter and wind force influence is reduced when the sea is ice-covered. However, the study reveals two other striking features. First, if the experimental area is covered with ice, the ambient noise drops by up to 10 dB/Hz when the Beaufort Duct disappears. Further, a large part of the noise variability is driven by distant cryogenic events, hundreds of kilometers away from the acoustic receivers. This was quantified using correlations between the CANAPE acoustic data and distant ice-drift magnitude data (National Snow and Ice Data Center).This research was supported by the Independent Research and Development Program at WHOI and by the Office of Naval Research (ONR) under Grant Nos. N00014-19-1-2627 and N00014-18-1-2811. J.B. warmly acknowledges D. Cazau (ENSTA Bretagne, France) for helpful discussion and code sharing. The acoustic data collection effort was supported by the ONR under Grant No. N00014-15-1-2196 (Principal Investigator: Y.-T. Lin, WHOI). Thanks also go to crew members of the R/V Sikuliaq and USCGC Healy for assisting in mooring operations. The ITP data were collected and made available by WHOI

    Information Replication Strategy in Unstructured Peer-to-Peer Networks Using Thematic Agents

    Get PDF

    Solving ill-posed bilevel programs

    No full text
    This paper deals with ill-posed bilevel programs, i.e., problems admitting multiple lower-level solutions for some upper-level parameters. Many publications have been devoted to the standard optimistic case of this problem, where the difficulty is essentially moved from the objective function to the feasible set. This new problem is simpler but there is no guaranty to obtain local optimal solutions for the original optimistic problem by this process. Considering the intrinsic non-convexity of bilevel programs, computing local optimal solutions is the best one can hope to get in most cases. To achieve this goal, we start by establishing an equivalence between the original optimistic problem an a certain set-valued optimization problem. Next, we develop optimality conditions for the latter problem and show that they generalize all the results currently known in the literature on optimistic bilevel optimization. Our approach is then extended to multiobjective bilevel optimization, and completely new results are derived for problems with vector-valued upper- and lower-level objective functions. Numerical implementations of the results of this paper are provided on some examples, in order to demonstrate how the original optimistic problem can be solved in practice, by means of a special set-valued optimization problem

    Defining the cognitive phenotype of autism

    Get PDF
    Although much progress has been made in determining the cognitive profile of strengths and weaknesses that characterise individuals with autism spectrum disorders (ASDs), there remain a number of outstanding questions. These include how universal strengths and deficits are; whether cognitive subgroups exist; and how cognition is associated with core autistic behaviours, as well as associated psychopathology. Several methodological factors have contributed to these limitations in our knowledge, including: small sample sizes, a focus on single domains of cognition, and an absence of comprehensive behavioural phenotypic information. To attempt to overcome some of these limitations, we assessed a wide range of cognitive domains in a large sample (N = 100) of 14- to 16-year-old adolescents with ASDs who had been rigorously behaviourally characterised. In this review, we will use examples of some initial findings in the domains of perceptual processing, emotion processing and memory, both to outline different approaches we have taken to data analysis and to highlight the considerable challenges to better defining the cognitive phenotype(s) of ASDs. Enhanced knowledge of the cognitive phenotype may contribute to our understanding of the complex links between genes, brain and behaviour, as well as inform approaches to remediation

    Visual perceptual load induces inattentional deafness

    Get PDF
    In this article, we establish a new phenomenon of “inattentional deafness” and highlight the level of load on visual attention as a critical determinant of this phenomenon. In three experiments, we modified an inattentional blindness paradigm to assess inattentional deafness. Participants made either a low- or high-load visual discrimination concerning a cross shape (respectively, a discrimination of line color or of line length with a subtle length difference). A brief pure tone was presented simultaneously with the visual task display on a final trial. Failures to notice the presence of this tone (i.e., inattentional deafness) reached a rate of 79% in the high-visual-load condition, significantly more than in the low-load condition. These findings establish the phenomenon of inattentional deafness under visual load, thereby extending the load theory of attention (e.g., Lavie, Journal of Experimental Psychology. Human Perception and Performance, 25, 596–616, 1995) to address the cross-modal effects of visual perceptual load

    Differential wedging of vertebral body and intervertebral disc in thoracic and lumbar spine in adolescent idiopathic scoliosis – A cross sectional study in 150 patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hueter-Volkmann's law regarding growth modulation suggests that increased pressure on the end plate of bone retards the growth (Hueter) and conversely, reduced pressure accelerates the growth (Volkmann). Literature described the same principle in Rat-tail model. Human spine and its deformity i.e. scoliosis has also same kind of pattern during the growth period which causes wedging in disc or vertebral body.</p> <p>Methods</p> <p>This cross sectional study in 150 patients of adolescent idiopathic scoliosis was done to evaluate vertebral body and disc wedging in scoliosis and to compare the extent of differential wedging of body and disc, in thoracic and lumbar area. We measured wedging of vertebral bodies and discs, along with two adjacent vertebrae and disc, above and below the apex and evaluated them according to severity of curve (curve < 30° and curve > 30°) to find the relationship of vertebral body or disc wedging with scoliosis in thoracic and lumbar spine. We also compared the wedging and rotations of vertebrae.</p> <p>Results</p> <p>In both thoracic and lumbar curves, we found that greater the degree of scoliosis, greater the wedging in both disc and body and the degree of wedging was more at apex supporting the theory of growth retardation in stress concentration area. However, the degree of wedging in vertebral body is more than the disc in thoracic spine while the wedging was more in disc than body in lumbar spine. On comparing the wedging with the rotation, we did not find any significant relationship suggesting that it has no relation with rotation.</p> <p>Conclusion</p> <p>From our study, we can conclude that wedging in disc and body are increasing with progression on scoliosis and maximum at apex; however there is differential wedging of body and disc, in thoracic and lumbar area, that is vertebral body wedging is more profound in thoracic area while disc wedging is more profound in lumbar area which possibly form 'vicious cycle' by asymmetric loading to spine for the progression of curve.</p
    corecore