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1 Introduction

Bilevel programming (BLP), which involves two optimization problems where the con-
straint region of the upper level problem is implicitly determined by the lower level prob-
lem, has been widely applied to decentralized planning problems involving a decision
progress with a hierarchical structure. Nowadays, more and more researchers have de-
voted their efforts to this field, and many papers have been published about bilevel op-
timization both from the theoretical and computational points of view [1-3], however,
many of them deal with the bilevel programming problem where the lower level is a single
objective optimization problem. In fact, many practical problems need to be modeled as
multi-objective (vector-valued) optimization problem in the lower level; see [4—6].

Bonnel and Morgan [7] firstly labeled the bilevel programming problem with multi-
objective in the lower level problem as ‘semivectorial bilevel programming problem, and
a penalty approach is suggested to solve the problem in a general case where the objec-
tive functions of the upper level and the lower level are defined on Hausdorff topological
space, but no numerical results are reported. Subsequently, Bonnel [8] derived necessary
optimality conditions for the semivectorial bilevel optimization problem in very general
Banach spaces. More recently, Dempe [9] also studied the optimality conditions based on
the optimal value function reformulation approach for the semivectorial bilevel optimiza-
tion problem.

Another penalty method is developed in [10] in the case where the objective function of
the upper level problem is concave and the lower level is a linear multi-objective optimiza-
tion problem. Along the line of [7, 10], for a class of semivectorial bilevel programming
problem, where the upper level is a general scalar-valued optimization problem and the
lower level is a linear multi-objective optimization problem, Zheng and Wan [6] presented
a new penalty function approach based on the objective penalty function method.
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In this paper, inspired by the solution algorithm proposed in [11] for the optimistic linear
Stackelberg problem, we will give an optimistic solution approach for the linear semivec-
torial bilevel programming problem. Our strategy can be outlined as follows. By using the
weighted sum scalarization approach, we reformulate the linear semivectorial bilevel pro-
gramming problem as a special bilevel programming problem, where the lower level is a
parametric linear scalar optimization problem. Then, based on the optimal value function
reformulation approach, we transform the linear semivectorial bilevel programming prob-
lem into a nonsmooth optimization problem and propose an algorithm. We analyze the
global and local convergence of the algorithm and give a numerical example to illustrate
the algorithm proposed in this paper.

The remainder of the paper is organized as follows. In the next section we present the
mathematical model of the linear semivectorial bilevel programming problem and give
the optimal value function reformulation approach. In Section 3, we give the optimistic
solution algorithm and analyze the convergence. Finally, we conclude this paper.

2 Linear semivectorial bilevel programming problem and some properties
The linear semivectorial bilevel programming problem, which is considered in this paper,
can be described as follows:

min C{ x + CJy,
%y
s.t. minDy, 1)
y
s.t. Ax+By<b,

where x € R", y € R", b € R?, A € RP*", B € RP*™, C; € R1*", C, € R7*™, D € R,

Note that in problem (1), the objective function of the upper level is minimized w.r.t. x
and y, that is, in this work we adopt the optimistic approach to consider the linear semivec-
torial bilevel programming problem [4].

Let S = {(x,y)|Ax + By < b} denote the constraint region of problem (1), Y(x) = {y €
R™|Ax + By < b} be the feasible set of the lower level problem, and I1, = {x € R"|3y €
R™,Ax + By < b} be the projection of S onto the upper level’s decision space. To well de-
fine problem (1), we make the following assumption.

(A) The constraint region S is nonempty and compact.

For fixed x € R", let S(x) denote the weak efficiency set of solutions to the lower level
problem

(Px): myin Dy,
st. Ax+By<b.
Then problem (1) can be written as follows:
min{ClTx +Cly:xel,ye S@)}.

One way to transform the lower level problem (P,) into an usual one level optimization
problem is the so-called scalarization technique, which consists of solving the following
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further parameterized problem:

min ATDy,
g 2)
st. Ax+By<b,

where the new parameter vector A is a nonnegative point of the unit sphere, i.e., A belongs
to Q= {A|A e R, Zﬁzl A; = 1}. Since it is a difficult task to choose the best choice x(y) on
the Pareto front for a given upper level variable x, our approach in this paper consists of
considering the set Q2 as a new constraint set for the upper level problem. To proceed in
this way, denote by ¥ (x, 1) the solution set of problem (2) in the usual sense, for any given
parameter couple (x, 1) € I, x Q. The following relationship (see, e.g., Theorem 3.1in [9])
relates the solution set of (P,) and that of (2).

Proposition 2.1 Let assumption (A) be satisfied. Then we have

Sx) =¥ (x, Q) := U{w(x,k):k € Q}.
Hence, problem (1) can be replaced by the following bilevel programming problem:

min C{ x + CJ y,
2,9,

!
s.t. Z ri=1,
i=1

A>0,

min ATDy,
y

st. Ax+By<b.

The link between problem (1) and (3) will be formalized in the next result. For this, noting
that a set-valued map B : R* — R is closed at (u,v) € R* x R® ifand only if for any sequence
(u*, V) € gph & with (u¥,v%) — (u,v), one has v € E(u). E is said to be closed if it is closed
at any point of R* x R?.

Proposition 2.2 Counsider problem (1) and (3); the following assertions hold:
(i) Let (%, 1) be a local (resp., global) optimal solution of problem (1). Then, for all
y € Y(x) with y € ¥ (%, 1), the point (%,y, 1) is a local (resp., global) optimal solution
of problem (3).
(ii) Let (x,, 1) be a local (resp., global) optimal solution of problem (3) and assume the
set-valued mapping \ is closed. Then (x,) is a local (resp., global) optimal solution
of problem (1).

Remark As the objective functions and constraint functions in problem (1) satisfy the
conditions of Proposition 3.1 in [9], following Proposition 3.1 in [9], Proposition 2.2 is

obvious.
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Problem (3) is the usual bilevel programming problem. In order to solve problem (3),
one common approach is to substitute the lower level problem in problem (3) by its K-K-T
optimality conditions [12]. However, the recent research by Dempe and Dutta [13] shows
that in general the original bilevel programming problem and its K-K-T reformulation
are not always equivalent, even in the case when the lower level programming problem
is a parametric convex optimization problem. In this paper we adopt the optimal value
function reformulation approach, which will be described in the following.

Let ¢(x, 1) = min, {1 TDy: Ax + By < b}, problem (3) can be transformed into the follow-

ing one level optimization problem:

min Clx + CIy,

1 2

EXN
!

s.t. Zx,- =1,

i=1

(4)

This approach has been investigated e.g. in [14], and it is shown that problem (3) is fully
equivalent to problem (4).
Similar to the result in [11], we also have the following results about the optimal value

function ¢(x, A).

Proposition 2.3 The function ¢(x,1) is a piecewise linear concave function over Q :=
{(x, 1) : (x, 1) < 00}.

This result is implied by the property that a linear programming problem has a ba-
sic optimal solution and the number of vertices {(x},'),..., (*”,5”)} of the convex poly-
hedron {(x,y) : Ax + By < b} is finite. Then ¢(x,A) can be reformulated as ¢(x,1) =
min;_y,_, {)LTDyi }, which clearly is a piecewise linear concave function. In addition, it is
a result of convex analysis that the function ¢(x, 1) is Lipschitz continuous on the interior
of Q [15].

Let v/ € dp(x’,A) for i = 1,..., ¢ be supergradients of the concave function with

dp(x, 1)) ={a o) <o, M) +a” (x—a,A = 1),V(x,1) € R”*l}. (5)

Then {(x,5,1) : Ax + By < b, Zl{:l ri=1L,ATDy <@(x,A),A >0} C T :={(x,y,1): Ax + By <
b, Zﬁzl A =1,A > 0,ATDy < (!, 1)) + (V)T (x — &', L — AD),i = 1,...,¢t}, with the vertices
(x,5', 1Y) of the polyhedron {(x,y,1): Ax + by <b,Y ' A;=1,1 > 0}.

It is obvious that the optimal function value of problem (4) is not smaller than the opti-

mal function value of the problem

min{C1Tx+C2Ty:(x,y,k)e T}. 6)
X,
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Based on the above analysis, we can propose an algorithm for problem (4). The main
idea is that instead of problem (4), the relax problem

!
min{ CI'x+ Cly: Ax + By < b,Z/\,- =1,A"Dy<minATDz,1 >0}, (7)
X0,k P} zeZ

with Z C Y(x), is solved. It is obvious that the constraint A7 Dy < min,cz A7 Dz enlarges
the feasible set of problem (4).

In order to reduce the feasible set of problem (7) and approximate the one of problem (4),
Z is extended successively. Furthermore, every optimal solution of problem (7), which is

feasible to problem (4), is an optimal solution for this problem.

Proposition 2.4 Let the feasible point (x,, 1) be a global optimal solution of problem (7)
for Z C Y (x). If (%, %, A) is feasible to problem (4), then it is also a globally optimal solution
to problem (4).

Proof Suppose the opposite and denote the feasible set of problem (7) by

i
Tr = (x,y,k):Ax+By§b,Zki:I,ATDyfanei?ATDZ,)» >0¢.
i=1

Let IR = {(x,y,1) : Ax + By < b, Zﬁzl Li = ,ATDy < ¢(x,1), A > 0} denote the feasible
set of problem (4). Then, for problem (4), there exists some point (x,y,1) € IR, (x,y,A) #
(%, 7, 1), with

Clx+Cly<Clx+C]y.

As IR C Tk, (x,y,A) is also feasible to problem (7), thus contradicting the optimality of
(%, 7, 1). O

3 Algorithm and convergence
Based on the above analysis, we can propose the following algorithm.

Algorithm 1

Step 0. Choose a vector for Z, set k := 1.

Step 1. Solve problem (7) globally. The optimal solution is (x*,y*, ¥).

Step 2. If (x*, ¥, 1) is feasible to problem (4), stop. Otherwise, compute an optimal so-
lution z* of the lower level problem with the parameter (x%, A¥). Set Z := ZU {z"}, k:=k + 1
and go to Step 1.

In Step 0, we can find the first vector for Z by solving the following programming prob-

lem:
T T
nﬁlyn Cix+Cyy,

st. Ax+By<b.
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In Step 1, as problem (7) is a nonlinear, nonconvex programming problem with a linear
objective function. It can be solved using an augmented Lagrangian function in order to
create linear subproblems [16].

The following theorem gives the convergence result of Algorithm 1.

Theorem 3.1 Let assumption (A) be satisfied. Then every accumulation point (%,y,1) of
the sequence (x*,y*, \X) produced by Algorithm 1 is a globally optimal solution for prob-
lem (4).

Proof The existence of accumulation points follows from the concavity, continuity of
@(x, 1), together with the assumed boundedness of S.

Let (%, 7, ») be an accumulation point of the sequence {(xX, %, AX)}. We make the assump-
tion {zX} — Z for the sequence produced in Step 2 of Algorithm 1. This follows from the
nonemptiness and compactness of the set S as well as from the convergence of the param-
k

eters x* — x.

In the kth iteration, suppose that (x%, yk, 1K) is not feasible to problem (4), i.e.
(5, 25) = (kk)TDzk < (kk)TDyk,

with z& € Z as calculated in Step 2. Following the continuity of the optimal value function
©(x, 1), we have

w(xk,kk) = (Ak) "D = (M)TDz = (%, A).
Feasibility of (X, y%, A¥) to problem (7) leads to
KNy, k (kT
(A%)" Dy 5&1}1(?» ) Dz,

and
(W'Dy < (2)"Dz = ¢(%1).
Therefore, (x,, A) is feasible and globally optimal to problem (4). |

Now we consider the local optimality of Algorithm 1, that is, in Step 1 of Algorithm 1,
the relaxed problem (7) is solved locally instead of globally. Before formulating the local
convergence result, we first introduce a suitable cone of feasible directions.

Definition 3.1 Let (x,%,A) € Tk. The contingent cone at (X, y, ») with respect to Ty is given
by

Cre (%9, 4) = {d e R3] (65,95, 05)} € Tw, 3t} S R\ {0},

k) k,)‘-k - _1_1;'
lim ¢ = 0,d = lim ("2o*) Z () ))}.
k—00 k

—00 7%

We have the following local convergence result.
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Theorem 3.2 Let assumption (A) be satisfied and that (CL,CI,07)d > 0 for all d €
Crp(x%,9%,2X). Then every accumulation point (%,7, 1) of the sequence {(x*,y*, \X)} gener-
ated by Algorithm 1 with the adjusted Step 1 is locally optimal for problem (4).

Proof Both the existence of accumulation points and the feasibility for problem (4) and (7)
follow from the above Theorem 3.1. Let (%, y, A) be an accumulation point of the sequence
{(6%,9%,1%)}. In the kth iteration, (x,y%, AX) is locally optimal for problem (7), then for
every sequence {(x', 7", A!)} C T converging to (x, y*, AX), we have, for all / > 0,

0=< C1Tx1+C2Tyl—C1Txk—C2Tyk
= (€107 (0 20) = (,94,2))

+o([[(54) = (5529 ), ®

with limy_, o o] (&%, 5, AE) — (5, %, AV N /11, 4, AE) — (6K, 9%, A%)|| = 0. Obviously, we get

(xl;)’l, )‘-l) - (xk,yk: )"k)
m
1= || (x!, 91, A1) = (&K, y%, A5) |

= d € Cry (¥, 05).

Following (8), one deduces that

Cla'+ Gy - Clw* - CiyF (], 01" (0, 41) — (5,94, 49))
||(xl,yl, )Ll) - (xk;yk’ )\k)” ”(xl»yl’ }\l) - (xk,yk» )Lk)”
O(H(xl:yl: )‘«l) - (xkxyk7 }"k)")

” (xlryl¢ )\'1) - (xkd’k, )"k) ”

Applying the assumption in Theorem 3.2, it leads to

Clal + CTy = CTA* = CTy* oy, A1) = (&, 0%, 291D
”(xl’yl: )‘41) - (xk;ykr )\k)” ||(xl,yl,)~l) - (xk,yk, )"k)” '

That is,
Clx'+ CIyl - CIx* - CIyf > € [ (x, 91, A]) - (5, 9525 . 9)

Here € has some small value.

Since IR N U(xX,y*, 1K) C Tp, here U(x*,y*, 1¥) is an open neighborhood of the point
(K, y%, 1K), and (X, y%, AX) is feasible to problem (4) for sufficiently large k, formula (9) is
still valid for all (x,y, 1) € U(x*, ¥, A%) N IR, (x,y,A) # (xX, 5%, AK). Noting that we have for
all {(x/, 5", A1)} converging to (%,7, 1)

Clal+ CTy - Clx - Cly> €| (¢, 9, 4)) = @5, 1),

because (%, 7, A) is an accumulation point of {(x*,y*, AX)} and feasible to problem (4). [
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To illustrate the above algorithm, we solve the following linear semivectorial bilevel pro-

gramming problems.

Example1 Consider the following linear semivectorial bilevel programming problem [6],

where x € R3, y € R®:

min —14x; + 11x, + 8x3 — 15y; — 3ys + 43,

x>0
s.t.,

miglel =6x1 — 2x9 + 4xs — 4y1 + 7y, — 7y3,
y=

miglez = —x1 — 13%y — 33 + 491 + 2y + 4ys,
y=

migleg = —x1 — 2%y — 18x3 + 3y1 — 9y, + 8y,
y=

s.t.

15x1 — 7x9 + 3x3 + 2y1 — 792 + 2y3 < 200,
7x1 + 7% + 6x3 + y1 + 13y2 + y3 <140,
2x1 + 29 —x3 + 14y + 2y5 + 2y3 < 240,
—3x1 + 6x9 + 12x3 + 4y; — 8y, + y3 < 140,
4x) — 7x0 + 7x3 + 291 + 4y, — 7y3 < 45,

4x) + 5% +x3 —7y1 — 62 + y3 < 800.

The solution proceeds as follows.

Step 0. Solve the above Example 1 without the lower level objective functions, and obtain
an initial vector for Z := {(14.1771,2.7860,6.0360)}, k := 1.

Step 1. Solve problem (7), obtain an optimal solution (x{,x5,x3, 7,75 V5, A, A3, A3) =
(11.9384,0,0,14.1771,2.7860,6.0360,0.0767,0.4870,0.4363).

Step 2. The lower level problem in (4) with (x},x%,xé,k},)é,)né) =(11.9384,0,0,0.0767,
0.4870,0.4363) leads to (z},2},25) = (14.1771,2.7860,6.0360), which coincides with the
solution (y},73,y3) = (14.1771,2.7860,6.0360) in Step 1, hence the algorithm terminates
with the optimal solution (x],x3,x5,71,y5,73) = (11.9384,0,0,14.1771,2.7860,6.0360),
which coincides with the optimistic optimal solution in [6].

It is noted that in Example 1 we only need one iteration to get the optimal solution by
the algorithm proposed. The reason why such thing happens is that the optimal solution
ignoring the lower level objective function for the example is just feasible to it. We also
solve Example 3 and 4 in [6] using the algorithm proposed in this paper, and for the two
examples, one iteration is needed to obtain the optimal solution.

To further illustrate the effectiveness of the algorithm, we consider Example 2, which is
constructed following Example 3.8 in [11]. As the two lower level objective functions are
compatible, following Example 3.8 the optimistic optimal solution for Example 2 is also
(x,9) =(-1,-1,2,2).
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Example 2 Consider the following linear semivectorial bilevel programming problem,
where x € R?, y € R%:

min 2x; + Xy — 21 + Y2,
Xy

st ]l <1,
-1<x, <-0.75,
minlel =—y1 — Y2,

minF22 = —2_)11 - 2)12,
y

S.L.
=231 +¥2, <0,
N =<2

0=<y,=<2.
The solution proceeds as follows.

Loop1

Step 0. Z :={(0,0)}, k:=1.

Step 1. Solve problem (7), and obtain an optimal solution (x},x3, 51, y3, AL, AL) = (-1,-1,2,
0,0.5,0.5).

Step 2. The lower level problem in (4) with (x},x5,1,1}) = (-1,-1,0.5,0.5) leads to
(z1,73) = (2,2), which is added to Z. Go to Step 1.

Loop 2

Step 1. Solve problem (7) with the updated Z, and obtain an optimal solution (x,x3, 72,
y3,A3,A3) = (-1,-1,2,2,0.5,0.5).

Step 2. The lower level problem in (4) with (x},x5,A1,4}) = (-1,-1,0.5,0.5) leads to
(22,23) = (2,2), which coincides with the solution of Step 1, hence the algorithm termi-
nated with the optimal solution (x7,%3,y7,73) = (-1,-1,2,2).

4 Conclusion
In this paper, we consider the linear semivectorial bilevel programming problem. Based
on the optimal value reformulation approach, we transform the problem into a single
level programming problem. We propose an algorithm for solving the linear semivectorial
bilevel programming problem, and the global and local convergence of the algorithm are
analyzed. Finally, some linear semivectorial bilevel programming problems are solved to
illustrate the algorithm.

In addition, as the constraint region S is compact, only its vertices need to be considered
for the computation of optimal solutions; then the algorithm proposed in this paper stops

after a finite number of iterations.
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