142 research outputs found

    Cryopreservation of Dormant Buds from Diverse Fraxinus Species

    Get PDF
    Ash (Fraxinus) is an economically important tree genus in the landscape industry, as well as a key component of North American forests, especially in the North Central United States and adjacent regions in Canada. In recent years, the Emerald Ash Borer beetle (Agrilus planipennis) has significantly threatened the survival of native North American Fraxinus species. A dormant-bud cryopreservation technique has been developed as a method to conserve specific clones of ash. Dormant buds of three ash species were successfully cryopreserved when desiccated on their stem sections to 30% moisture content (w/v) and then cooled at rates of either −1°C/h or −5°C/day to either −30 or −35°C before immersion in liquid nitrogen vapor (LNV). Stem sections were removed from LNV, warmed, and rehydrated, and their buds grafted onto rootstocks to evaluate survival. Recovery percentages ranged from 34 to 100% after LNV exposure and were dependent upon accession and cooling rate. The cryopreservation methods proposed herein can complement seed-collection efforts aimed at conserving diversity, supplementing ex situ genebank and botanic-garden collections

    Cryopreservation of Populus Trichocarpa and Salix Dormant Buds with Recovery by Grafting or Direct Rooting

    Get PDF
    BACKGROUND: Methods are needed for the conservation of clonally maintained trees of Populus and Salix. In this work, Populus trichocarpa and Salix genetic resources were cryopreserved using dormant scions as the source explant. OBJECTIVE: We quantified the recovery of cryopreserved materials that originated from diverse field environments by using either direct sprouting or grafting. MATERIALS AND METHODS: Scions (either at their original moisture content of 48 to 60% or dried to 30%) were slowly cooled to -35°C, transferred to the vapor phase of liquid nitrogen (LNV, -160°C), and warmed before determining survival. RESULTS: Dormant buds from P. trichocarpa clones from Westport and Boardman, OR had regrowth levels between 42 and 100%. Direct rooting of cryopreserved P. trichocarpa was also possible. Ten of 11 cryopreserved Salix accessions, representing 10 different species, exhibited at least 40% bud growth and rooting after 6 weeks when a bottom-heated rooting system was implemented. CONCLUSION: We demonstrate that dormant buds of P. trichocarpa and Salixaccessions can be cryopreserved and successfully regenerated without the use of tissue culture

    Cryopreservation of grapevine (Vitis spp.) shoot tips from growth chamber-sourced plants and histological observations

    Get PDF
    Many genebanks rely on cryopreservation as a method to preserve vulnerable field collections of vegetatively propagated crops. Effective cryopreservation procedures have been identified for Vitis; however, they usually use in vitro plantlets as the shoot tip source materials. It is costly to establish Vitis collections in vitro prior to cryopreservation. We sought to determine if growth chamber derived Vitis plants could serve as the source of shoot tips for cryopreservation. Nodal sections from growth chamber derived plants were surface-disinfected and placed in tissue culture on pre-treatment medium for 2 weeks. Uniform apical shoot tips (1 mm) were first obtained from the nodal sections and then precultured for 3 days on medium containing 0.3 M sucrose, salicylic acid, glutathione (reduced form), ascorbic acid and plant preservative mixture. Half-strength PVS2 was applied for 30 min at 22 °C, prior to full-strength PVS2 treatment at 0 °C. Cryopreserved shoot tips had the highest average regrowth of 50 and 55 % without and with cold-acclimation followed with a full-strength PVS2 exposure duration of 40 and 30 min at 0 °C, respectively. This cryopreservation protocol achieved high percentages of regrowth in V. vinifera 'Chardonnay' and 'Riesling' and V. hybrid 'Oppenheim'. Histological observations revealed that shoot tips from growth chamber plants had apical as well as multiple lateral meristems that survived LN immersion. The preservation of multiple meristems in each shoot tip may increase the capacity of shoot tip regeneration in cryopreserved Vitis that originates from ex vitro sources. The high percentage of regrowth after shoot tip cryopreservation using Vitis shoot tips derived from growth chamber source plants suggest that it may be possible to cryopreserve Vitis shoot tips without first introducing each accession into tissue culture

    Mutations in TFIIH causing trichothiodystrophy are responsible for defects in ribosomal RNA production and processing

    Get PDF
    The basal transcription/repair factor II H (TFIIH), found mutated in cancer-prone or premature aging diseases, plays a still unclear role in RNA polymerase I transcription. Furthermore, the impact of this function on TFIIHrelated diseases, such as trichothiodystrophy (TTD), remains to be explored. Here, we studied the involvement of TFIIH during the whole process of ribosome biogenesis, from RNAP1 transcription to maturation steps of the ribosomal RNAs. Our results show that TFIIH is recruited to the ribosomal DNA in an active transcription- dependent manner and functions in RNAP1 transcription elongation through ATP hydrolysis of the XPB subunit. Remarkably, we found a TFIIH allele-specific effect, affecting RNAP1 transcription and/or the pre-rRNA maturation process. Interestingly, this effect was observed in mutant TFIIH-TTD cells and also in the brains of TFIIH-TTD mice. Our findings provide evidence that defective ribosome synthesis represents a new faulty mechanism involved in the pathophysiology of TFIIH-related diseases.</p

    LEKTI proteolytic processing in human primary keratinocytes, tissue distribution and defective expression in Netherton syndrome

    Get PDF
    SPINK5, encoding the putative multi-domain serine protease inhibitor LEKTI, was recently identified as the defective gene in the severe autosomal recessive ichthyosiform skin condition, Netherton syndrome (NS). Using monoclonal and polyclonal antibodies, we show that LEKTI is a marker of epithelial differentiation, strongly expressed in the granular and uppermost spinous layers of the epidermis, and in differentiated layers of stratified epithelia. LEKTI expression was also demonstrated in normal differentiated human primary keratinocytes (HK) through detection of a 145 kDa full-length protein and a shorter isoform of 125 kDa. Both proteins are N-glycosylated and rapidly processed in a post-endoplasmic reticulum compartment into at least three C-terminal fragments of 42, 65 and 68 kDa, also identified in conditioned media. Processing of the 145 and 125 kDa precursors was prevented in HK by treatment with a furin inhibitor. In addition, in vitro cleavage of the recombinant 145 kDa precursor by furin generated C-terminal fragments of 65 and 68 kDa, further supporting the involvement of furin in LEKTI processing. In contrast, LEKTI precursors and proteolytic fragments were not detected in differentiated HK from NS patients. Defective expression of LEKTI in skin sections was a constant feature in NS patients, whilst an extended reactivity pattern was observed in samples from other keratinizing disorders, demonstrating that loss of LEKTI expression in the epidermis is a diagnostic feature of NS. The identification of novel processed forms of LEKTI provides the basis for future functional and structural studies of fragments with physiological relevanc

    A mechanistic target of rapamycin complex 1/2 (mTORC1)/V-Akt murine thymoma viral oncogene homolog 1 (AKT1)/cathepsin H axis controls filaggrin expression and processing in skin, a novel mechanism for skin barrier disruption in patients with atopic dermatitis

    Get PDF
    Background Filaggrin, which is encoded by the filaggrin gene (FLG), is an important component of the skin's barrier to the external environment, and genetic defects in FLG strongly associate with atopic dermatitis (AD). However, not all patients with AD have FLG mutations. Objective We hypothesized that these patients might possess other defects in filaggrin expression and processing contributing to barrier disruption and AD, and therefore we present novel therapeutic targets for this disease. Results We describe the relationship between the mechanistic target of rapamycin complex 1/2 protein subunit regulatory associated protein of the MTOR complex 1 (RAPTOR), the serine/threonine kinase V-Akt murine thymoma viral oncogene homolog 1 (AKT1), and the protease cathepsin H (CTSH), for which we establish a role in filaggrin expression and processing. Increased RAPTOR levels correlated with decreased filaggrin expression in patients with AD. In keratinocyte cell cultures RAPTOR upregulation or AKT1 short hairpin RNA knockdown reduced expression of the protease CTSH. Skin of CTSH-deficient mice and CTSH short hairpin RNA knockdown keratinocytes showed reduced filaggrin processing, and the mouse had both impaired skin barrier function and a mild proinflammatory phenotype. Conclusion Our findings highlight a novel and potentially treatable signaling axis controlling filaggrin expression and processing that is defective in patients with AD

    Kallikrein 5 induces atopic dermatitis–like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome

    Get PDF
    Netherton syndrome (NS) is a severe genetic skin disease with constant atopic manifestations that is caused by mutations in the serine protease inhibitor Kazal-type 5 (SPINK5) gene, which encodes the protease inhibitor lymphoepithelial Kazal-type–related inhibitor (LEKTI). Lack of LEKTI causes stratum corneum detachment secondary to epidermal proteases hyperactivity. This skin barrier defect favors allergen absorption and is generally regarded as the underlying cause for atopy in NS. We show for the first time that the pro-Th2 cytokine thymic stromal lymphopoietin (TSLP), the thymus and activation-regulated chemokine, and the macrophage-derived chemokine are overexpressed in LEKTI-deficient epidermis. This is part of an original biological cascade in which unregulated kallikrein (KLK) 5 directly activates proteinase-activated receptor 2 and induces nuclear factor κB–mediated overexpression of TSLP, intercellular adhesion molecule 1, tumor necrosis factor α, and IL8. This proinflammatory and proallergic pathway is independent of the primary epithelial failure and is activated under basal conditions in NS keratinocytes. This cell-autonomous process is already established in the epidermis of Spink5−/− embryos, and the resulting proinflammatory microenvironment leads to eosinophilic and mast cell infiltration in a skin graft model in nude mice. Collectively, these data establish that uncontrolled KLK5 activity in NS epidermis can trigger atopic dermatitis (AD)–like lesions, independently of the environment and the adaptive immune system. They illustrate the crucial role of protease signaling in skin inflammation and point to new therapeutic targets for NS as well as candidate genes for AD and atopy

    Evolutionary History of Tissue Kallikreins

    Get PDF
    The gene family of human kallikrein-related peptidases (KLKs) encodes proteins with diverse and pleiotropic functions in normal physiology as well as in disease states. Currently, the most widely known KLK is KLK3 or prostate-specific antigen (PSA) that has applications in clinical diagnosis and monitoring of prostate cancer. The KLK gene family encompasses the largest contiguous cluster of serine proteases in humans which is not interrupted by non-KLK genes. This exceptional and unique characteristic of KLKs makes them ideal for evolutionary studies aiming to infer the direction and timing of gene duplication events. Previous studies on the evolution of KLKs were restricted to mammals and the emergence of KLKs was suggested about 150 million years ago (mya). In order to elucidate the evolutionary history of KLKs, we performed comprehensive phylogenetic analyses of KLK homologous proteins in multiple genomes including those that have been completed recently. Interestingly, we were able to identify novel reptilian, avian and amphibian KLK members which allowed us to trace the emergence of KLKs 330 mya. We suggest that a series of duplication and mutation events gave rise to the KLK gene family. The prominent feature of the KLK family is that it consists of tandemly and uninterruptedly arrayed genes in all species under investigation. The chromosomal co-localization in a single cluster distinguishes KLKs from trypsin and other trypsin-like proteases which are spread in different genetic loci. All the defining features of the KLKs were further found to be conserved in the novel KLK protein sequences. The study of this unique family will further assist in selecting new model organisms for functional studies of proteolytic pathways involving KLKs
    corecore