20 research outputs found

    Technical and economic feasibility of the capture and geological storage of CO2 from a bio-fuel distillery: CPER Artenay project

    Get PDF
    AbstractThis paper first focuses on the environmental benefits of the CCS system applied to a bio-ethanol distillery before estimating its feasibility under geological and economic constraints.First, the calculation of CO2 balance in this application shows that the introduction of CO2 capture and sto rage in biomass energy systems (B-CCS) can si gnificantly increase the CO2 abat ement potential of the system and even leads to negative carbon emissions. Besides, a preliminary geological investigation reveals that the studied area has a good storage potential although the presence of major faults, while the low capture costs of CO2 from biomass fermentation emphasize the economic potential o f such a solution

    METSTOR: A GIS to look for potential CO2 storage zones in France

    Get PDF
    AbstractThe METSTOR project offers a methodology to look for potentially interesting CO2 storage areas in France at the initial stage, before the “site selection” step. Our tool, embodied in a Geographic Information System, is based on an interactive map of CO2 storage capacities. Other relevant information layers are included. The geographic layers are complemented with a series of online technical notices. It seems to be the first open online GIS that offers policy makers, businesses and the public at large an integrated access to that necessary information. Our prototype, limited mainly to the Paris Basin, is released online at www.metstor.fr

    Resonant Raman scattering of anthracene‐based carbons in the secondary carbonization stage

    No full text
    The Raman spectra of graphene-based matter exhibit a set of defect/disorder-induced bands. The D band, which exhibits a strong dispersion up to similar to 50 cm(-1)/eV, comes from transverse optical phonons around K or K ' in the first Brillouin zone and involves an intervalley double resonance (DR) Raman process. In the present work, resonant Raman scattering (lines ranging from 1.58 to 3.81 eV) is used to study the unusual behavior of the one-phonon Raman band of a carbonaceous material (anthracene-based carbon which is one of the graphitizable carbons) upon its secondary carbonization stage (450 degrees C-1000 degrees C). While the G band appears to be nondispersive, the D band exhibits a change in both position and intensity. Its dispersion progressively rises from similar to 6 cm(-1)/eV to values close to what is usually observed in defected graphene-based systems when anthracene-based carbon becomes almost pure. This evolution appears to be correlated with a release of hydrogen (fixed on the edges of polyaromatic layers) questioning their role in changing the D band resonance conditions

    From geology to economics: Technico-economic feasibility of a biofuel-CCS system

    Get PDF
    International audienceThis paper presents a method to estimate the technical and economic feasibility of capturing and geologically storing CO 2 resulting from biomass fermentation. The methodology is applied to the case of bio-refineries in the Paris Basin, France. The first step is to build a 3D geological model of the area studied and to choose the optimal injection location from geological and environmental constraints. Then, based on this information, the design of the CCS system (pipeline length, number and type of wellbores, surface equipment ...) and the estimation of the technical feasibility (sufficient storage capacity, risk analysis and management ...) can be performed. The last step is the estimation of the environmental benefits of this system (through a carbon and energy footprint) and its economic long term feasibility thanks to a discounted cash flow analysis. The impact of geological constraints on the economic feasibility of the system is estimated through a sensitivity assessment on the number of required injection wellbore

    Coal laboratory characterisation for CO2 geological storage

    Get PDF
    International audienceGeological storage of CO2 in unmineable coal seams could be a very interesting option in the sustainable management of coal basins. However, the various chemical and physical parameters that determine the success or failure of this type of operation need to be clarified. The CHARCO project aims at developing methods and analysis techniques in order to define the major parameters enabling optimal CO2 storage conditions. In this framework, 22 coals of different ranks were sampled in different locations and systematically characterized (coal ranks, macerals, porosities, CO2 and CH4 adsorption isotherms ...). The isotherms were modelled using the classical Langmuir formalism in order to obtain their adsorption capacities and their affinity for CO2. The high number of coals and parameters considered in our study allow a statistical treatment using Principal Component Analysis. The sorption capacity can not be easily correlated with any other single parameter. On the other hand, CO2 affinity is correlated with coal rank
    corecore