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Abstract 

This paper presents a method to estimate the technical and economic feasibility of capturing and geologically storing 

CO2 resulting from biomass fermentation. The methodology is applied to the case of bio-refineries in the Paris 

Basin, France. The first step is to build a 3D geological model of the area studied and to choose the optimal injection 

location from geological and environmental constraints. Then, based on this information, the design of the CCS 

system (pipeline length, number and type of wellbores, surface equipment …) and the estimation of the technical 

feasibility (sufficient storage capacity, risk analysis and management …) can be performed. The last step is the 

estimation of the environmental benefits of this system (through a carbon and energy footprint) and its economic 

long term feasibility thanks to a discounted cash flow analysis. The impact of geological constraints on the 

economic feasibility of the system is estimated through a sensitivity assessment on the number of required injection 

wellbores. 
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1. Introduction 

The Biomass-CCS systems consists in capturing and storing CO2 stemming from biomass transformation or 

exploitation. Several industrial sectors could be investigated like the paper industry, the electric sector, or the biofuel 

sector. According to Kheshgi and Prince [1], this last option called BECCS (Bio-Energy Carbon Capture and 

Storage) can potentially contribute to a net greenhouse gas (GHG) emission reduction, given that CO2 from biomass 

is considered neutral. Moreover the IEA CCS Roadmap [2] emphasizes that this system has the global potential to 

store about 2 Gt of CO2 by 2050, assuming that biofuels could account for 26% of the total transport fuel demand. 

As previously mentioned in Bonijoly et al, [3], the general scope of the CPER Artenay project is to identify the 

geological and technical factors that lead to a profitable and GHG efficient Biomass-CCS project.  
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Within the scope of the project, the purpose of this paper is to present a methodology to assess the technical and 

economic feasibility of the capture and storage of CO2 emitted from biomass fermentation. The study is based on 

real data coming from a sugar beet ethanol plant located in France. 

2. System description 

2.1. Study area location 

The study area is located within an area of 900 km² in the southern portion of the Paris Basin, close to Orléans. It 

is a highly attractive region thanks to its favorable capability to match sources and sinks. Indeed, two sugar beet 

refineries are located at short distance from two major deep saline aquifers (the Dogger and Keuper formations) that 

could be suitable for CO2 storage.

2.2. Refinery description 

For the purpose of the study, only carbon emissions linked to bio-ethanol production are considered. Then the 

simplified sugar refinery scheme shown on Figure 1 depicts the two considered CO2 sources for capture: the 

cogeneration unit fed with natural gas (“fossil” CO2) and the fermentation unit (“biomass” CO2). However, all CO2

sources, including emissions related to sugar beet harvesting and transport, and so on, are taken into account in the 

carbon balance of the system.  

Figure 1: Schematic representation of the items considered in this study to describe the bio-ethanol production. 

Each of the two refineries considered in this study produce 600,000 hl of bio-ethanol per year. For this 

production, the volumes of CO2 emitted per source are: 45,000 t from the fermentation unit and 60,500 t from the 

cogeneration unit. These yearly volumes are quite small, but the CO2 emission rate is not constant during the year. 

As illustrated in Figure 2, during the three months of the harvest period (October to December), the production of 

bio-ethanol and thus CO2 emissions are about three times higher than for the rest of the year (two fermentation tanks 

are used during the campaign, while only a smaller one is used otherwise).  

2.3. Capture strategy  

The stream coming from the fermentation unit is mainly composed of CO2 (about 85%), O2 and N2. However, in 

this preliminary study, we assume it is composed of 100 % CO2. This corresponds to an ideal anaerobic 

fermentation where each mole of glucose creates one mole of ethanol and one mole of carbon dioxide. 

Consequently, only compression is needed before transport and storage. 

No specific measurement has been made to determine the composition of the stream coming from the co-

generation unit (fired with natural gas). However it seems reasonable to follow the generic assumption that CO2 is 

diluted (around 8 vol%) in mostly nitrogen. 
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Under these assumptions, the study from Laude et al, [4] emphasizes that, due to the small volume considered 

here, the capture of CO2 from the cogeneration unit (“fossil” source) is not economically profitable. Consequently, 

only the capture of CO2 from the fermentation unit is considered in the following parts of the study. 

Moreover, we only consider here the most economically efficient scenario, which consists in gathering CO2

coming from the two close distilleries with similar feature, which leads to the capture of 90,000 t per year of CO2

from biomass fermentation.  

Figure 2. CO2 emission rate variation for the refinery considered in this study. 

3. Technical issues 

3.1. Step 1 : Geological characterization 

The first step of the methodology is to build up a conceptual geological model with a particular challenge for 

‘deep aquifer’ storage due to the scarcity of available data. The approach used is based on the interpretation of 

300km of seismic lines combined with an integrated study (sedimentology, sequence stratigraphy and geostatistic 

simulations) of more than 50 wellbores data. Three major normal faults crossing the area were identified, among 

which the Sennely fault affects all formations from the basement to the Lower Cretaceous. The layers are nearly 

sub-horizontal, except close to the faults where bends (drag folds) are observed. The overall description of the 

geological characterization methodology is reported in [5]. 

This study emphasizes that the Dogger aquifer is either not deep enough for CO2 storage, or exhibits 

poor/average reservoir properties within the study area. On the opposite, the Triassic aquifer located at the South-

East of the Artenay refinery should be an interesting storage location, with a high average permeability (around 

500 mD i.e. 5.10-13 m²) and effective thickness (i.e. thickness times Net-to-Gross) higher than 20 m. 

However this work is a pre-feasibility study and significant uncertainty remains with regards to the petrophysical 

characteristics of the studied reservoir. 

3.2. Step 2 : Injection point selection 

The next step of the study is the determination of the optimal injection point. This determination is made 

following the methodology initially developed by Grataloup et al., [6]. It starts with the combination of “killer 

criteria” to exclude areas where CO2 injection should not be possible: the vicinity of potential leakage pathways 

(existing wellbores, faults), permit areas for hydrocarbon or geothermal exploration and exploitation, environmental 

restriction areas, populated areas or the spatial footprint of major surface facilities such as roads or railways. Then, 

the optimal injection point(s) is (are) identified from the remaining zones through the combination of “site 

qualification criteria” (better storage capacity and injectivity, cheaper CO2 transportation…). The combination of 

some of the criteria (killer criteria or site qualification criteria) in a Geographical Information System (GIS) is 

reported in Figure 3.  
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Figure 3 : Determination of the optimal injection zones from a GIS analysis 

For this study, the buffer distance around potential leakage pathways was fixed by an expert panel in the light of 

preliminary flow simulations. These resulted in an order of magnitude plume extent lower than 10 km2 for dissolved 

CO2 within the Triassic sandstone aquifer after 30 years injection and 30 years post-injection. To ensure an optimal 

injection site selection, the width of buffer zones around potential leakage pathways should be re-evaluated for each 

project, depending on the amount and flow rate of CO2 injected and considering the geological and hydrogeological 

characteristics of the target formation. 

3.3. Step 3 : Transport and Storage design 

After determining optimal injection zones, more detailed flow simulations can be run to estimate injectivity, the 

extent of the CO2 plume and the overpressure within the open aquifer after 30 years injection. Based on these 

results, the choice of the most suitable injection point within the zones (selected during step 2) is optimized 

according to the site qualification criteria in order to ensure the safest operational conditions. 

The next step is to design the pipeline network, the wellbores (injection/monitoring), and the surface facilities.  
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The transport is realized by pipeline, with CO2 in a dense phase. Because of the short distance (around 30 km) 

and of the absence of elevation differentials, there is no need for any intermediate pumping stations for the CO2 to 

reach the wellhead at an appropriate pressure for injection. Furthermore, the injection location is determined in a 

way to avoid the crossing of significant obstacles such as highways or important rivers. The pipeline outlet pressure 

at the injection well is equal to the injection pressure required at the wellhead. The maximum pressure at the inlet of 

the pipeline is 150bar. The diameter and thickness of the pipe are in accordance with the API5L standard. 

For the injection step, the pressure at the wellhead was calculated considering a 4” tubing (with a thickness of 

5.7 mm) and a thermal gradient of 3.5°C/100m. The Keuper aquifer is 2250m deep, and in a first approximation, its 

initial pressure (i.e. before injection) is supposed to be homogeneous and equal to 225 bar (hydrostatic pressure). 

To avoid any mechanical damage, the maximum injection pressure is estimated to be 30% higher than the 

hydrostatic pressure. Consequently, for the maximal flow rate, the pressure at the wellbore shoe during injection 

should be 292.5 bar. Under the assumption of this preliminary study, one sole injection wellbore was found 

sufficient for injecting the 90,000 t of CO2 per year, which corresponds to a maximum flow rate close to 350,000 t/y 

during the harvesting period.  

However, as written previously, significant uncertainty pervades the geological characterization of the site. In 

particular, from wellbore data analysis, the permeability of the Triassic aquifer can vary, from 10 mD (10-14 m²) to 

1D (10-12 m²) within the study area. For lower values in this permeability range, additional injection wellbores may 

be needed to inject the same flow rate of CO2. Then a sensitivity test on the required number of wells was performed 

and the economic profitability of the system was scanned considering either one or two injection wellbore(s).  

3.4. Step 4 : Risk management 

The selection of the injection point realized during step 2 is not sufficient to ensure permanence and safety of the 

storage. An assessment of relevant risks should be carried out and a risk management plan developed for the site. 

The methodology established within the CRISCO2 project [7] was used here. It is based on the assessment of the 

potential effects of risk events, judged relevant by an expert panel, given the results of the previous geological 

characterization, the results of the dynamic simulations and the analysis of a number of maps of the site showing the 

vulnerability of the environment, external hazards, etc. The potential exposure of vulnerable assets resulting from 

these risk events is estimated and safety requirements are deduced from its comparison to critical thresholds. This 

methodology focuses on simple, but realistic physically-based modeling and addresses uncertainty management. It 

is worth underlining that risk assessment for a BECCS system needs to take into account the associated compounds 

in the flue gas, which are significantly different from the case of fossil fuels CCS, i.e. Volatile Organic Compounds, 

acetaldehydes, and oxygen. 

Considering the localization of the injection point, a few risk scenarios like leakage through an abandoned 

wellbore or fault reactivation were examined, while others such as fracturation induced by a natural seism were not. 

A more extensive description of this step and of the results obtained for several case studies should be developed in 

a further publication. 

4. Economic and environmental assessment 

To quantitatively assess the interest of BECCS, a carbon and energy footprint and an economic analysis were 

performed from the technical results from the previous steps. The overall description of the method used here is 

reported in [4]. 

4.1. Step 5: Carbon and Energy Footprint (CEF) 

The CEF analysis aims at quantifying the environmental benefit when implementing the entire infrastructure 

required for CCS on a sugar refinery. To this end, the studied indicators are greenhouse gas production and non-

renewable energy consumption.  

The whole system is considered for this CEF, from the sugar beet growing to fuel consumption, as well as 

considering a construction, an operation and a dismantling phase for the facilities. 
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The CEF was structured and carried out following the current standards [8, 9]. The external expertise required by 

these standards has however not been conducted. The impacts were assessed using the Impact 2002+ methodology. 

It gives tables of equivalence between impacts and substances. 

The data for bioethanol production and consumption come from the ADEME/DIREM 2002 study and from data 

provided by a local sugar and ethanol producer located in Artenay. 

The streams coming from the fermentation unit and from bio-ethanol consumption are assumed to be pure and 

carbon neutral. Indeed all of the carbon dioxide produced during these steps corresponds to carbon dioxide that was 

previously absorbed by the sugar beets during photosynthesis. It is thus included in the natural carbon cycle and 

does not contribute to the greenhouse effect (for a larger description of the carbon and energy balance see Laude et 

al [4]). 

Results reported in Table 1 emphasized the great environmental benefits of this system. Indeed, CO2 emissions 

for fuel production and consumption can be cut by 75 % when compared to regular fuel and by 61% when compared 

to classical bio-ethanol. Moreover, only a slight increase of non renewable energy is needed to implement the CCS 

chain on the bio-refinery (+5%). This system then allows reducing demand in non renewable energy by 28% in 

comparison to the use of regular fuel. 

As previously discussed by Laude et al. [4], capturing and storing both CO2 from biomass and from the 

cogeneration unit would be needed to achieve negative emission. However this system was found to be hardly 

economically viable for the small volume considered here.  

Table 1. Results of the CEF analysis and comparison with the production and consumption of 1 MJ of either bioethanol without CCS, or of 

regular fuel.  

Regular fuel production 

and consumption 

Bioethanol production 

without CCS and 

consumption 

Bioethanol production 

and consumption with 

CCS on fermentation 

GHG Emissions 

 (gCO2eq/MJ) 85.9 54.5 21.25 

Non renewable energy 

consumption (MJ/MJ) 1.15 0.79 0.83 

4.2. Step 6: Economic analysis 

Based on the environmental results from the previous steps, the economic analysis aimed at deciding if the 

BECCS project must be undertaken. The decision rule used for comparing the costs and benefices of the project is 

the net present value (NPV). The NPV is the difference between the sum of the discounted cash flows which are 

expected and the amount which is initially invested. If the NPV results in a positive amount, the project should be 

adopted.  

Consequently, an estimate of the cash flow is needed as well as assumptions on the evolution of gas and carbon 

prices throughout the project’s lifetime. As previously underlined by the IEA outlook in 2008 [10], carbon price 

should be strongly influenced by policy. To scan this effect, we chose two scenarios based on the two major political 

targets: 550ppm or 450ppm maximum CO2 content in the atmosphere in 2100. In the first scenario, the price per ton 

of CO2, as foreseen by the IEA, is assumed to be 30€ by 2020 and 65€ by 2030. In the second case, the measures 

taken after 2020 are more restrictive, so that, while the price per ton remains 30€ in 2020, it is projected to increase 

to 130€ by 2030. After 2030, marginal abatement costs are supposed to decrease thanks to new technologies so that 

carbon prices tend to slowly decrease (see [11]).  

To ensure the viability of this project, biomass avoided emissions with CCS need to be integrated into new GHG 

accounting protocols so that BECCS projects can be awarded emissions credit benefits for the technology to be 

successful. Therefore we assume that a ton of avoided CO2 thanks to BECCS accounts for a carbon credit in the 

European Trading System.  

For the case considered in this study, the cost per ton of CO2 abated is 57.4 €/tCO2, where, as reported in Table 

2A, storage accounts for 50% of the total cost, transport for 13% and capture for 37%. This uncommon cost 
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repartition can be explained by the fact that, in this BECCS system, the CO2 stream is almost pure and the distance 

between the refineries and the storage location is relatively short (lower than 30 km).  

Table 2. Repartition of the cost of CCS applied on the fermentation unit only and considering the match of the Toury and Artenay sources. (A) 

stands for the base injectivity case and (B) for a lower aquifer injectivity that leads to an additional injection wellbore. 

Cost per ton of abated carbon Capture (%) Transport (%) Storage (%) Total€/tCO2eq 

One injection well (A) 37 13 50 57 

Two injections wells (B) 22 11 66 91 

The profitability evaluation, reported in Figure 4, emphasizes the importance on the environmental policy 

stringency. In the 450 ppm policy the investment yields 60 M€ in profits after 30 years injection. However in the 

550 ppm policy it only yields 3M€ 

 The impact of an additional wellbore on the cost per ton of carbon abated is shown in Table 2B. With a 60% 

increase in this cost, the influence of the number of injection wells required, and thus of transmissivity (i.e. 

permeability times effective thickness) of the target reservoir, on the project cost structure can be easily seen. In this 

case, as sketched in Figure 4, the project profitability is drastically reduced and even becomes strongly negative for 

a 550 ppm policy. 
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Figure 4: Estimation of the economic viability after 30 years of injection of the studied BECCS systems as a function of the number of injection 

wells and of the policy.  

5. Concluding remarks 

In this paper, we have presented a step-by-step methodology to estimate the technical and economic feasibility of 

capturing and storing CO2 resulting from biomass fermentation. The steps identified are: 

� Step 1: Geological characterization and 3D modeling. 

� Step 2: Preliminary flow modeling and injection point selection  

� Step 3: CCS chain design 

� Step 4: Risk assessment, risk mitigation and monitoring plan design 

� Step 5: Environmental balance (carbon and energy footprint) 

� Step 6: Economic evaluation (Discounted Cash Flow analysis). 

Then environmental and economic calculations are based on realistic input data from a geological site 

characterization and technical sizing of the CCS plant. 

The calculation was made assuming that all stored tons of CO2 lead to carbon credit, whatever the carbon origin 

(fossil or biomass). It is important to point out that it is not currently the case in the European Trading Scheme [12]. 
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Within the Kyoto framework, CO2 emissions are accounted differently depending on their origin (e.g biomass vs. 

fossil). The regulation providing guidance for GHG accounting does not consider BECCS as eligible for the first 

commitment period of the protocol (2008-2012) [13]. However, to ensure viability of this project, emissions from 

biomass must be integrated into new GHG accounting protocols so that BECCS projects can be awarded emissions 

credit benefits.  

Moreover, research should be further developed in order to store CO2 coming from biomass. The influence of the 

presence of organic compounds in the CO2 stream has indeed to be assessed, especially with respect to the 

interaction of such compounds with the deep biosphere [14]. 
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