175 research outputs found

    Training convolutional neural networks to score pneumonia in slaughtered pigs

    Get PDF
    The slaughterhouse can act as a valid checkpoint to estimate the prevalence and the economic impact of diseases in farm animals. At present, scoring lesions is a challenging and time‐consuming activity, which is carried out by veterinarians serving the slaughter chain. Over recent years, artificial intelligence(AI) has gained traction in many fields of research, including livestock production. In particular, AI‐based methods appear able to solve highly repetitive tasks and to consistently analyze large amounts of data, such as those collected by veterinarians during postmortem inspection in high‐throughput slaughterhouses. The present study aims to develop an AI‐based method capable of recognizing and quantifying enzootic pneumonia‐like lesions on digital images captured from slaughtered pigs under routine abattoir conditions. Overall, the data indicate that the AI‐based method proposed herein could properly identify and score enzootic pneumonia‐like lesions without interfering with the slaughter chain routine. According to European legislation, the application of such a method avoids the handling of carcasses and organs, decreasing the risk of microbial contamination, and could provide further alternatives in the field of food hygiene

    Group 2 innate lymphoid cells and reproduction

    Get PDF
    Regulation of the immune system and of uterine tissue homeostasis, growth, and remodelling are deeply intertwined during pregnancy and are essential for successful reproduction. Recent findings showed that tissue-resident innate lymphoid cells (ILCs) are crucial regulators of both physiology and pathology of the tissues they populate. Uterine natural killer (uNK) cells are a subtype of ILCs known to regulate trophoblast invasion, uterine vascular adaptation to pregnancy, and foetal growth. We recently described additional types of ILCs in the uterus of women and mice. However, the role of these ILCs during reproduction is unknown. Among them, group 2 ILCs (ILC2s) have been previously characterised in other tissues, in which they modulate immune cells and tissue homeostasis by producing type-2 cytokines and growth factors (i.e. IL-4, IL-5, IL-13, and Amphiregulin). Based on these premises, I hypothesized that uterine ILC2s (uILC2s) regulate uterine immune homeostasis and thus contribute to successful reproduction. To test this, I first characterised the uILC subtypes present in humans and mice at various stages of the reproductive cycle. Secondly, I addressed the functional role of uILC2s during pregnancy by taking advantage of a uILC2 knockout mouse model. My results show that uterine ILC2s represent <1% and <0.1% of murine and human uterine leukocytes, respectively. However, as they can quickly produce large amounts of cytokines, uILCs are capable of potently affect both other immune cells and the surrounding tissue. Indeed, I found that compared to other tissue-resident ILC2s, uILC2s produce high levels of IL-5 and Areg even in the absence of any stimulation. On the contrary, non-uterine ILC2s mainly produce IL-13, which is lowly expressed by uILC2s. To further characterize the tissuespecific properties of uILC2s, I then performed RNAseq on uILC2s isolated from virgin, midgestation, and term murine uterus, and I compared their transcriptomes with those of ILC2s from lung, intestine, and bone marrow. Interestingly, uILC2s specifically express granzymes and genes typical of regulatory T cells. Therefore, uILC2s have tissue-specific properties and are modulated during pregnancy. Furthermore, the ability of uILC2s to produce IL-5 and Areg suggests that they may be crucial in the regulation of uterine type-2 immunity. I then studied the phenotype of Roraflox/floxIl7racre/wtRora^{flox/flox}Il7ra^{cre/wt}(ILC2KO) mouse models, as well as that of mice lacking the ILC2 activating cytokine IL-33 (IL33cit/citIL33^{cit/cit}; IL33KO). I examined the immune microenvironment in both the myometrium and decidua in ILC2KO mice and found alterations in type-2 cytokines and myeloid cell homeostasis. In particular, in absence of ILC2s, IL-4 and IL-5 are dramatically reduced, IL-13 is absent, and decidual inflammatory cytokines IL1β and IL-6 are increased. Furthermore, uterine dendritic cells (uDC), uterine macrophages (uMac), and uterine neutrophils (uN) increase, while uterine eosinophils (uEo) are virtually absent. These results show that uILC2s regulate uterine type-2 immunity, suggesting that uILC2s could be important during pregnancy. Accordingly, I found that lack of uILC2s leads to insufficient spiral artery remodelling and restricted foetal growth. Type-2 cytokines and in particular IL-4 regulates alternative activation of Macrophages (Mac) and Dendritic Cells (DCs), which promote the development of an anti-inflammatory environment and facilitate tissue remodelling. I hypothesised that similar mechanisms occur in the uterus and that uILC2s have a central role in the polarisation of the immune response. To explore this, I studied in more detail the characteristics of uEo, uMac, and uDCs dissected from wild type and ILC2KO mice. I found a reduction in genes associated with alternative activation in uMac and uDCs in the uterus of pregnant ILC2KO mice. Additionally, I showed that uEo are the main producers of the IL-4. This demonstrates that uILC2s promote alternative activation of myeloid cell population by modulating the uterine immune microenvironment. I then assessed the role of uILC2s-dependent type-2 immunity in inflammatory pathology following a type-1 response to bacterial infection. When challenged with LPS, pregnant ILC2KO mice showed more pronounced foetal demise. Therefore, uILC2s regulate uterine type-2 immune homeostasis and this prevents inflammatory pathology. Collectively, my work advances our knowledge of the innate immune mechanisms that control physiological and pathological events during pregnancy. These findings have implications to the field of immunology of pregnancy and may lead to clinical progress in diagnosis and prevention of infection-induced abortion in human pregnancies.Centre for trophoblast research (CTR

    Start of SPIDER operation towards ITER neutral beams

    Get PDF
    Heating Neutral Beam (HNB) Injectors will constitute the main plasma heating and current drive tool both in ITER and JT60-SA, which are the next major experimental steps for demonstrating nuclear fusion as viable energy source. In ITER, in order to achieve the required thermonuclear fusion power gain Q=10 for short pulse operation and Q=5 for long pulse operation (up to 3600s), two HNB injectors will be needed [1], each delivering a total power of about 16.5 MW into the magnetically-confined plasma, by means of neutral hydrogen or deuterium particles having a specific energy of about 1 MeV. Since only negatively charged particles can be efficiently neutralized at such energy, the ITER HNB injectors [2] will be based on negative ions, generated by caesium-catalysed surface conversion of atoms in a radio-frequency driven plasma source. A negative deuterium ion current of more than 40 A will be extracted, accelerated and focused in a multi-aperture, multi-stage electrostatic accelerator, having 1280 apertures (~ 14 mm diam.) and 5 acceleration stages (~200 kV each) [3]. After passing through a narrow gas-cell neutralizer, the residual ions will be deflected and discarded, whereas the neutralized particles will continue their trajectory through a duct into the tokamak vessels to deliver the required heating power to the ITER plasma for a pulse duration of about 3600 s. Although the operating principles and the implementation of the most critical parts of the injector have been tested in different experiments, the ITER NBI requirements have never been simultaneously attained. In order to reduce the risks and to optimize the design and operating procedures of the HNB for ITER, a dedicated Neutral Beam Test Facility (NBTF) [4] has been promoted by the ITER Organization with the contribution of the European Union\u2019s Joint Undertaking for ITER and of the Italian Government, with the participation of the Japanese and Indian Domestic Agencies (JADA and INDA) and of several European laboratories, such as IPP-Garching, KIT-Karlsruhe, CCFE-Culham, CEA-Cadarache. The NBTF, nicknamed PRIMA, has been set up at Consorzio RFX in Padova, Italy [5]. The planned experiments will verify continuous HNB operation for one hour, under stringent requirements for beam divergence (< 7 mrad) and aiming (within 2 mrad). To study and optimise HNB performances, the NBTF includes two experiments: MITICA, full-scale NBI prototype with 1 MeV particle energy and SPIDER, with 100 keV particle energy and 40 A current, aiming at testing and optimizing the full-scale ion source. SPIDER will focus on source uniformity, negative ion current density and beam optics. In June 2018 the experimental operation of SPIDER has started

    Recent experiments with the European 1MW, 170GHz industrial CW and short-pulse gyrotrons for ITER

    Get PDF
    The European Gyrotron Consortium (EGYC) is developing the European 1 MW, 170 GHz Continuous Wave (CW) industrial prototype gyrotron for ITER in cooperation with Thales Electron Devices (TED) and Fusion for Energy (F4E). This conventional, hollow-cavity gyrotron, is based on the 1 MW, 170 GHz Short-Pulse (SP) modular gyrotron that has been designed and manufactured by the Karlsruhe Institute of Technology (KIT) in collaboration with TED. Both gyrotrons have been tested successfully in multiple experiments. In this work we briefly report on the results with the CW gyrotron at KIT and we focus at the experiments at the Swiss Plasma Center (SPC). In addition, we present preliminary results from various upgrades of the SP tube that are currently tested at KIT
    corecore