Recent Progress in the ITER EC H&CD System

M. Henderson^a, F. Albajar^b, S. Alberti^c, U. Baruah^d, T. Bigelow ^e, B. Becket^a, R. Bertizzolo^c, T. Bonicelli^b, A. Bruschi^f, J. Caughman ^e, R. Chavan^c, S. Cirant^f, A. Collazos^c, C. Darbos^a, M. deBaar^g, G. Denisov^h, D. Farina^f, F. Gandini^a, T. Gassman^a, T.P. Goodman^c, R. Heidinger^b, J.P. Hogge^c, O. Jean^a, K. Kajiwaraⁱ, W. Kasparek^j, A. Kasugaiⁱ, S. Kern^l, N. Kobayashiⁱ, J.D. Landis^c, A. Moro^f, C. Nazare^a, J. Odaⁱ, I. Paganakis^c, P. Platania^f, B. Plaum^j, E. Poli^k, L. Porte^c, B. Piosczyk^l, G. Ramponi^f, S.L. Rao^d, D. Rasmussen^e, D. Ronden^g, G. Saibene^b, K. Sakamotoⁱ, F. Sanchez^c, T. Scherer^l, M. Shapiro^m, C. Sozzi^f, P. Spaeh^l, D. Straus^l, O. Sauter^c, K. Takahashiⁱ, A. Tanga^a, R. Temkin^m, M. Thumm^l, M.Q. Tran^c, H. Zohm^k and C. Zucca^c

 ^a ITER Organization, St. Paul-lez-Durance, 13067 France;
^b Fusion for Energy, C/ Josep Pla 2, Torres Diagonal Litoral-B3,E-08019 Barcelona – Spain
^c CRPP, Association EURATOM-Confédération Suisse, EPFL Ecublens, CH-1015 Lausanne, Suisse ^d Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar, 382428, India
^e US ITER Project Office, ORNL, 055 Commerce Park, PO Box 2008, Oak Ridge, TN 37831, USA ^f Istituto di Fisica del Plasma, Association EURATOM-ENEA-CNR, Milano, Italy ^g Association EURATOM-FOM, 3430 BE Nieuwegein, The Netherlands ^h Institute of Applied Physics, 46 Ulyanov Street, Nizhny Novgorod, 603950 Russia ⁱ Japan Atomic Energy Agency (JAEA) 801-1 Mukoyama, Naka-shi, Ibaraki 311-0193 Japan
^j Institut fur Plasmaforschung, Universitat Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart, Germany ^kIPP-Garching, Association EURATOM-IPP,D-85748 Garching, Germany.
ⁱ Association EURATOM-FZK, IMF, Postfach3640 D-76021 Karlsruhe, Germany ^m MIT Plasma Science and Fusion Center, Cambridge, MA 02139, USA

With the help of many, many other colleagues:

china eu india japan korea russia usa

Outline

- General Overview of the EC system
- Progress in 2009
 - RF-building
 - Gyrotrons
 - Transmission Line
 - Launchers
 - Auxiliaries
- Scenario I Schedule
- Next Years (foreseen) Challenges

ITER H&CD Systems

All four heating systems envisioned for ITER in preparation for DEMO

NB	IC	EC	LH
		<image/>	Hgh power water load PAM PAM PAM Bad Coupler RF window Mode converter
33MW	20MW	20MW	OMW
+17MW	+20MW	+20MW	+40MW
Plasma Rotation for stabilizing RWM	Bulk ion heating	Localized H&CD for MHD control	off-axis Bulk current drive

Uniqueness of an EC System

ECH is ITERs only Heating and Current drive source that is both **localized** and **steerable**

ECH is a surgical tool that can "pen point" a spot in the plasma cross section to heat and/or drive current

Localized: power deposited in a small region ~0.04m (a=2.0m) electron heating: 20MW Driven current: 0.1 to 0.8 MA

Physics: Project Change Request PCR-098

The PCR optimizes the toroidal and poloidal steering angles of the EC launchers provide increased access from on-axis to near the plasma boundary

2008 baseline:

• EL

– Access $0.0 \le \rho_T < 0.5$ (Central heating and current drive applications)

• UL

– Access $0.5 \le \rho_T < 0.85$ (q=3/2 and 2 NTM locations)

PCR-098 Accepted Changes

The EL modifications are:

- Introduce ±5° poloidal tilt in top and bottom steering mirror
- Limit toroidal steering angle to ≤40° (avoid beam shine thru)
- Flip middle steering row for counter ECCD.
- The UL modifications are:
- Access $\rho_T \le 0.3$ with upper steering mirror
- Access $\rho_T \ge 0.95$ with two lower steering mirrors.

6 / 21

斗 china eu india japan korea russia usa

US/JA/EU RF Tech. Exchange:: ITER EC System

16 Sept. 2009

BTOR EC system Operating Window

US/JA/EU RF Tech. Exchange:: ITER EC System

Accessibility of Equatorial Launcher

Increased Operational range in Btor

US/JA/EU RF Tech. Exchange:: ITER EC System 16 Sept. 2009

EC System In-kind Procurements

5 Parties provide in-kind procurement of the 4 subsystems

2008-9 Procurement Changes/proposals:

china eu india japan korea russia usa

IN-DA Procures two 1MW 170GHz gyrotrons and associated PS system IN-EU proposal to share PS procurement (8 from EU, 5 from IN)

PCR-160 Startup Gyrotrons

170GHz can achieve the required functionality for breakdown and burn through Study concluded: Simplify EC system remove 127GHz, reduce investment costs

PCR-160 IN-DA and IO Resolution of Credits

IN-DA would procure:

- two 170GHz 1MW H&CD RF Sources
- one power supply set: MHVPS, BPS, APS (if necessary) and auxiliaries

IO encouraged:

- Minimize interface complexity, spare parts, procurement monitoring, etc.
- Request IN-DA to procure same RF source set as EU, JA or RF
- Request IN-DA to procure same power supply set as EU

• IN-DA use similar components for IC PS as EC PS

EC System Layout in RF Building

US/JA/EU RF Tech. Exchange:: ITER EC System 16 Sept. 2009 M Henderson

RF Building 2009

US/JA/EU RF Tech. Exchange:: ITER EC System

16 Sept. 2009

M Henderson

PCR-120: Power Supplies

PCR-120 Revised the PS specifications

The proposed modifications are:

- <u>Technical specifications</u>: Compatibility with the 3 gyrotron types.
- Anode Power Supplies : reduce from 24 to 8 (EU & RF are diode gyrotrons)
- Modularity : 1 PS to two 1MW gyrotron or one 2MW gyrotron, + PSM design.
- Space allocated : The EC PS fit inside available space
- Modulation : ≥1kHz from 100% to 0% RF power (via MHVPS) and ≥5kHz from 100% to 50% (via BPS).
- Input voltage : 22kV rather than 66kV.

Cost Impact

- Compatibility with 3 gyrotron types: + 2.1M€ (taken from Gyrotron DAs)
- Modularity (PSM based): +1.7M€
- Power Modulation: +3.6M€

china eu india japan korea russia usa

Level 2

Level 1

Transmission line (Conceptual Design Completed)

Switching network

china eu india japan korea russia usa

- <u>20MW</u>: Provides nearly complete access across the plasma cross section
- <u>40MW</u>: 40MW inside mid radius without new launchers

PCR-117: Internal Interfaces (decision tomorrow)

- in-situ and hands on maintenance of window
- in-situ diamond window leak detection
- ≤1 day access to valve and window

EC Launchers

To be Covered by JAEA Team

Preliminary Design Review for Nov. '09 Issues under resolution:

- Cooling efficiency of BSM flange
- EM deflections of port plug
- Complete quasi-optical model
- Test of 2nd prototype steering mirror

19 / 21

Scenario I

Aim to spread out resource profile (economic crisis, additional costs, etc.)

- ♀ 2018: first plasma (no BSM, 4–6MW EC for plasma initiation)
- 2023: Complete construction phase (73MW)

EC manufacturing and assembly relaxed (start 2015 to 2019)

- ♀ 2018: Simple EL with 8 beams, all TL and >8MW
- 2019: Full system installed, 1 year commissioning
- 2020: Full system ready, 1 year float
- 2021: Full system operating
- 2023: Upgrade could be consider for power available in 2026

Objectives and Collaborations

Initial 2010 Objectives

- Sign TL Procurement Arrangement, draft gyrotron and PS PAs
- Start final design activities for launchers
- Preliminary DR for EL, start Conceptual DR for gyrotrons
- Complete building layout, supported by an ITER Task Agreement (ITA)
- Re-write DDD
- Complete all Interface Control Documents
- Preliminary design of cooling manifold, plant host and other auxiliaries

>2010 Possible Collaborations and support

- DAs: PS design, gyrotron reliability, TL PA, EL and UL design work
- Gyrotron: integration meeting
- IL: Support in HE₁₁ mode monitor and tapers
- TL: Collaborate in beam combiner high power tests
- Collaborate with FZK on launcher outgassing estimates
- Collaborate with CRPP on modeling plant host
- All: request support for design review meetings
- All: open to any ideas for collaboration