2,088 research outputs found

    Quantum shot noise in mesoscopic superconductor-semiconductor heterostructures

    Get PDF
    Shot noise in a mesoscopic electrical conductor have become one of the most attentiondrawing subject over the last decade. This is because the shot-noise measurements provide a powerful tool to study charge transport in mesoscopic systems [1]. While conventional resistance measurements yield information on the average probability for the transmission of electrons from source to drain, shot-noise provides additional information on the electron transfer process, which can not be obtained from resistance measurements. For example, one can determine the charge ‘q’ of the current carrying quasi-particles in different systems from the Poisson shot noise SI = 2q�I� [2] where �I� is the mean current of the system. For instance, the quasi-particle charge is a fraction of the electron charge ‘e’ in the fractional quantum Hall regime [3, 4, 5]. The multiple charge quanta were observed in an atomic point contact between two superconducting electrodes [6]. Shot-noise also provides information on the statistics of the electron transfer. Shot noise in general is suppressed from its classical value SI = 2e�I�, due to the correlations. In mesoscopic conductors, due to the Pauli principle in fermion statistics, electrons are highly correlated. As a results, the noise is fully suppressed in the limit of a perfect open channel T = 1. For the opposite limit of low transmission T � 1, transmission of electron follows a Poisson process and recovers the Schottky result SI = 2e�I� [2]. For many channel systems, shot-noise is suppressed to 1/2 × 2e�I� for a symmetric double barrier junction [7, 8], to 1/3 in a disordered wire [9, 10, 11, 12, 13, 14] and to 1/4 in an open chaotic cavity [15, 16, 17]. When a superconductor is involved, the shot-noise can be enhanced by virtue of the Andreev reflection process taking place at the interface between a normal metal and a superconductor. In some limiting cases, e.g. in the tunneling and disordered limit, the shot-noise can be doubled with respect to its normal state value [18, 19, 20, 21]. One of the main results of this thesis is an extensive comparison of our experimental data on conductance and shot noise measurements in a S-N junction with various theoretical models. In addition to measure shot-noise in a two-terminal geometry, one can also perform the fluctuation measurements on multi-terminal conductors. Whereas shotnoise corresponds to the autocorrelation of fluctuations from the same leads, crosscorrelation measurements of fluctuations between different leads provide a wealth of new experiments. For example, the exchange-correlations can be measured directly from these geometry [22]. Experimental attempt in mesoscopic electronic device was the correlation measurements [14, 23] on electron beam-splitter geometry [24] which is the analogue to the Hanbury-Brown Twiss (HBT) experiment in optics. In their experiment, Hanbury-Brown and Twiss demonstrated the intensity-intensity correlations of the light of a star in order to determine its diameter [25]. They measured a positive correlations between two different output photon beams as predicted to the particles obeying Bose-Einstein statistics. This behavior is often called ‘bunching’. On the other hand, a stream of the particles obeying Fermi-Dirac statistics is expected to show a anti-bunching behavior, resulting in a negative correlation of the intensity fluctuations. Latter one was confirmed by a Fermionic version of HBT experiments in single-mode, high-mobility semiconductor 2DEG systems [14, 23]. Whereas in a single electron picture, correlations between Fermions are always negative1 (anti-bunching), the correlation signal is expected to become positive if two electrons are injected simultaneously to two arms and leave the device through different leads for the coincident detection in both outputs2. One simple example is the splitting of the cooper pair in a Y-junction geometry in front of the superconductor. Fig.1.1 shows the possible experimental scheme of the correlation measurement as described here and the sample realized in an high-mobility semiconductor heterostructures. Since all three experiments were done3, only one left unfolded, ‘The positive correlations from the Fermionic system’. The main motivation of this thesis work was to find a positive correlations in the device shown in Fig.1.1. In a well defined single channel collision experiment on an electron beam splitter, it has theoretically been shown that the measured correlations are sensitive to the spin entanglement [29, 30]. This is another even more exciting issue and we would like to mention that the experimental quest for positive correlations is important for the new field of quantum computation and communication in the solid state, [31, 32] in which entangled electrons play a crucial role. A natural source of entanglement is found in superconductors in which electrons are paired in a spin-singlet state. A source of entangled electrons may therefore be based on a superconducting injector.[33, 34, 27, 35, 36, 37, 38, 38, 39, 40, 41] Even more so, an electronic beamsplitter is capable of distinguishing entangled electrons from single electrons.[29, 42] However, the positive correlations have not been observed in solid-state mesoscopic devices until today. This thesis is organized as follows. Chapter 2 is devoted to the theoretical background of the electrical transport and the current fluctuations. We introduce the basic concept of electrical transport and the shot noise in normal state and superconductor-normal metal (S-N) junction. We also briefly review the theoretical proposals and arguments about the current-current cross-correlations in threeterminal systems. In Chapter 3, we describe the sample fabrication techniques which have been done in our laboratory such as e-beam lithography, metallization and etching. We present also the characterization of our particular system, niobium (Nb) / InAs-based 2DEG junction. Chapter 4 describes the reliable low-temperature measurement technique for detecting the noise. We characterize our measurement setup using a simple RC-circuit model. In Chapter 5, our main results about the shot noise of S-N junction are presented in detail

    Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions.

    Get PDF
    Life and death fate decisions allow cells to avoid massive apoptotic death in response to genotoxic stress. Although the regulatory mechanisms and signalling pathways controlling DNA repair and apoptosis are well characterized, the precise molecular strategies that determine the ultimate choice of DNA repair and survival or apoptotic cell death remain incompletely understood. Here we report that a protein tyrosine phosphatase, EYA, is involved in promoting efficient DNA repair rather than apoptosis in response to genotoxic stress in mammalian embryonic kidney cells by executing a damage-signal-dependent dephosphorylation of an H2AX carboxy-terminal tyrosine phosphate (Y142). This post-translational modification determines the relative recruitment of either DNA repair or pro-apoptotic factors to the tail of serine phosphorylated histone H2AX (gamma-H2AX) and allows it to function as an active determinant of repair/survival versus apoptotic responses to DNA damage, revealing an additional phosphorylation-dependent mechanism that modulates survival/apoptotic decisions during mammalian organogenesis

    The Power of Solvent in Altering the Course of Photorearrangements

    Get PDF
    A clean bifurcation between two important photochemical reactions through competition of a triplet state Type II H-abstraction reaction with a photo-Favorskii rearrangement for (o/p)-hydroxy-o-methylphenacyl esters that depends on the water content of the solvent has been established. The switch from the anhydrous Type II pathway that yields indanones to the aqueous-dependent pathway producing benzofuranones occurs abruptly at low water concentrations (~8%). The surprisingly clean yields suggest that such reactions are synthetically promising

    Self-Efficacy and Quality of Classroom Interactions of EFL Teachers in Niger

    Get PDF
    This study explores the relationships between self-efficacy and observed quality of classroom interactions of EFL teachers in Niger and how they compare to their American counterparts. We collected and analyzed self-efficacy data from 609 EFL teachers using the Teachers’ Sense of Self-efficacy Scale (TSES). In addition, classroom interaction data were collected from 53 Nigerien EFL teachers using the Classroom Assessment Scoring System (CLASS). All the self-efficacy subscales were significantly correlated with the CLASS Instructional Support domain. When we compared the self-efficacy and classroom interactions scores of Nigerien teachers with those of American teachers, a significant difference was only identified in the classroom management scale of TSES. In terms of the CLASS score difference, Nigerien teachers showed significantly higher scores on the Negative Climate and Analysis and Problem-Solving subscales. These findings suggest both teachers’ self-efficacy and the classroom interaction quality may need to be assessed in different ways across the two cultures

    Coagulation side effects of enzymatic debridement in burned patients

    Full text link
    Objectives Bromelain-based enzymatic debridement has emerged as a valuable option to the standard surgical intervention for debridement in burn injuries. Adverse effects on coagulation parameters after enzymatic debridement have been described. The purpose of this study was to compare the effect of enzymatic and surgical debridement on coagulation. Methods Between 03/2017 and 02/2021 patients with burn injuries with a total body surface area (TBSA) ≥ 1% were included in the study. Patients were categorized into two groups: the surgically debrided group and the enzymatically debrided group. Coagulation parameters were assessed daily for the first seven days of hospitalization. Results In total 132 patients with a mean TBSA of 17% were included in this study, of which 66 received enzymatic debridement and 66 received regular surgical-debridement. Patients receiving enzymatic debridement presented significantly higher factor-V concentration values over the first seven days after admission (p = 0.05). Conclusion Enzymatic debridement in burned patients does not appear to increase the risk of coagulation abnormalities compared with the regular surgical approach

    Characterization of digital annular pulleys and their entheses: an ultrasonographic study with anatomical and histological correlations

    Full text link
    Objectives: Digital annular pulleys (DAP) are important anatomical structures for finger function. The anatomy, histology, and imaging assessment of DAP, particularly at the level of their entheses is still not clearly defined. The advent of high-frequency ultrasound (US) transducers opened new perspectives in evaluating sub-millimeter scale structures, such as pulleys, paving the way for their global assessment. The study aimed at characterizing DAP from an anatomical, histological, and US perspective, focusing on the detection and complete description of pulley entheses. Methods: US assessment and gross anatomy dissection were conducted on 20 cadaveric hands to study DAP thickness and structure including enthesis identification. The results of the US and anatomical measurements were correlated. DAP entheses identified by US were characterized via histological analysis. DAP in 20 healthy controls (HC) were detected and measured by US. The A1, A2, and A4 DAP entheses were assessed using a new dynamic maneuver to better evaluate those structures. Results: 1200 DAP (400 cadaveric, 800 HC) were analyzed. The cadaveric study demonstrated strong correlation between anatomical and US measurement of DAP (r = 0.96). At histological level, DAP entheses at the volar plate, sesamoid bones, or phalangeal ridges contained fibrous and fibrocartilaginous tissue. The US assessment of A1, A2, and A4 DAP in HC allowed the identification of 718/720 (99.73%) entheses. Conclusion: US is an effective tool to detect and study DAP. DAP entheses reveal both fibrous and fibrocartilaginous characteristics. A newly described maneuver to optimize DAP enthesis visualization enhances their detection by US

    Development and validation of a cost-effective and sensitive bioanalytical HPLC-UV method for determination of lopinavir in rat and human plasma

    Get PDF
    © 2020 The Authors. Biomedical Chromatography published by John Wiley & Sons Ltd A simple, sensitive and cost-effective HPLC-UV bioanalytical method for determination of lopinavir (LPV) in rat and human plasma was developed and validated. The plasma sample preparation procedure includes a combination of protein precipitation using cold acetonitrile and liquid–liquid extraction with n-hexane–ethyl acetate (7:3, v/v). A good chromatographic separation was achieved with a Phenomenex Gemini column (C18, 150 mm × 2.0 mm, 5 μm) at 40°C with gradient elution, at 211 nm. Calibration curves were linear in the range 10–10,000 ng/mL, with a lower limit of quantification of 10 ng/mL using 100 μL of plasma. The accuracy and precision in all validation experiments were within the criteria range set by the guidelines of the Food and Drug Administration. This method was successfully applied to a preliminary pharmacokinetic study in rats following an intravenous bolus administration of LPV. Moreover, the method was subsequently fully validated for human plasma, allowing its use in therapeutic drug monitoring (TDM). In conclusion, this novel, simple and cost-efficient bioanalytical method for determination of LPV is useful for pharmacokinetic and drug delivery studies in rats, as well as TDM in human patients

    Oral administration of cannabis with lipids leads to high levels of cannabinoids in the intestinal lymphatic system and prominent immunomodulation

    Get PDF
    Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) have well documented immunomodulatory effects in vitro, but not following oral administration in humans. Here we show that oral co-administration of cannabinoids with lipids can substantially increase their intestinal lymphatic transport in rats. CBD concentrations in the lymph were 250-fold higher than in plasma, while THC concentrations in the lymph were 100-fold higher than in plasma. Since cannabinoids are currently in clinical use for the treatment of spasticity in multiple sclerosis (MS) patients and to alleviate nausea and vomiting associated with chemotherapy in cancer patients, lymphocytes from those patients were used to assess the immunomodulatory effects of cannabinoids. The levels of cannabinoids recovered in the intestinal lymphatic system, but not in plasma, were substantially above the immunomodulatory threshold in murine and human lymphocytes. CBD showed higher immunosuppressive effects than THC. Moreover, immune cells from MS patients were more susceptible to the immunosuppressive effects of cannabinoids than those from healthy volunteers or cancer patients. Therefore, administering cannabinoids with a high-fat meal or in lipid-based formulations has the potential to be a therapeutic approach to improve the treatment of MS, or indeed other autoimmune disorders. However, intestinal lymphatic transport of cannabinoids in immunocompromised patients requires caution
    corecore