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Chapter 1

Introduction

Shot noise in a mesoscopic electrical conductor have become one of the most attention-
drawing subject over the last decade. This is because the shot-noise measurements
provide a powerful tool to study charge transport in mesoscopic systems [1]. While
conventional resistance measurements yield information on the average probability
for the transmission of electrons from source to drain, shot-noise provides additional
information on the electron transfer process, which can not be obtained from resis-
tance measurements. For example, one can determine the charge ‘q’ of the current
carrying quasi-particles in different systems from the Poisson shot noise SI = 2q〈I〉
[2] where 〈I〉 is the mean current of the system. For instance, the quasi-particle
charge is a fraction of the electron charge ‘e’ in the fractional quantum Hall regime
[3, 4, 5]. The multiple charge quanta were observed in an atomic point contact
between two superconducting electrodes [6].

Shot-noise also provides information on the statistics of the electron transfer.
Shot noise in general is suppressed from its classical value SI = 2e〈I〉, due to the
correlations. In mesoscopic conductors, due to the Pauli principle in fermion statis-
tics, electrons are highly correlated. As a results, the noise is fully suppressed in the
limit of a perfect open channel T = 1. For the opposite limit of low transmission
T � 1, transmission of electron follows a Poisson process and recovers the Schot-
tky result SI = 2e〈I〉 [2]. For many channel systems, shot-noise is suppressed to
1/2 × 2e〈I〉 for a symmetric double barrier junction [7, 8], to 1/3 in a disordered
wire [9, 10, 11, 12, 13, 14] and to 1/4 in an open chaotic cavity [15, 16, 17].

When a superconductor is involved, the shot-noise can be enhanced by virtue
of the Andreev reflection process taking place at the interface between a normal
metal and a superconductor. In some limiting cases, e.g. in the tunneling and
disordered limit, the shot-noise can be doubled with respect to its normal state
value [18, 19, 20, 21]. One of the main results of this thesis is an extensive comparison
of our experimental data on conductance and shot noise measurements in a S-N
junction with various theoretical models.

In addition to measure shot-noise in a two-terminal geometry, one can also per-
form the fluctuation measurements on multi-terminal conductors. Whereas shot-
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8 1 Introduction

noise corresponds to the autocorrelation of fluctuations from the same leads, cross-
correlation measurements of fluctuations between different leads provide a wealth of
new experiments. For example, the exchange-correlations can be measured directly
from these geometry [22]. Experimental attempt in mesoscopic electronic device was
the correlation measurements [14, 23] on electron beam-splitter geometry [24] which
is the analogue to the Hanbury-Brown Twiss (HBT) experiment in optics. In their
experiment, Hanbury-Brown and Twiss demonstrated the intensity-intensity corre-
lations of the light of a star in order to determine its diameter [25]. They measured
a positive correlations between two different output photon beams as predicted to
the particles obeying Bose-Einstein statistics. This behavior is often called ‘bunch-
ing ’. On the other hand, a stream of the particles obeying Fermi-Dirac statistics
is expected to show a anti-bunching behavior, resulting in a negative correlation of
the intensity fluctuations. Latter one was confirmed by a Fermionic version of HBT
experiments in single-mode, high-mobility semiconductor 2DEG systems [14, 23].

Whereas in a single electron picture, correlations between Fermions are always
negative1 (anti-bunching), the correlation signal is expected to become positive if
two electrons are injected simultaneously to two arms and leave the device through
different leads for the coincident detection in both outputs2. One simple example is
the splitting of the cooper pair in a Y-junction geometry in front of the superconduc-
tor. Fig.1.1 shows the possible experimental scheme of the correlation measurement
as described here and the sample realized in an high-mobility semiconductor het-
erostructures. Since all three experiments were done3, only one left unfolded, ‘The
positive correlations from the Fermionic system’. The main motivation of this the-
sis work was to find a positive correlations in the device shown in Fig.1.1. In a
well defined single channel collision experiment on an electron beam splitter, it has
theoretically been shown that the measured correlations are sensitive to the spin
entanglement [29, 30]. This is another even more exciting issue and we would like
to mention that the experimental quest for positive correlations is important for the
new field of quantum computation and communication in the solid state, [31, 32]
in which entangled electrons play a crucial role. A natural source of entangle-
ment is found in superconductors in which electrons are paired in a spin-singlet
state. A source of entangled electrons may therefore be based on a superconducting
injector.[33, 34, 27, 35, 36, 37, 38, 38, 39, 40, 41] Even more so, an electronic beam-
splitter is capable of distinguishing entangled electrons from single electrons.[29, 42]
However, the positive correlations have not been observed in solid-state mesoscopic
devices until today.

1This statement, however, needs some assumptions to be completely correct. See Ref.[26] and
references there in for the detailed discussions on this issue.

2It is also true for some multi-channel cases if tunneling is systematically controlled by interme-
diate quantum dots, e.t.c. See for example, Ref.[27]

3The photon anti-bunching, i.e. negative correlations with single photon source was also exper-
imentally shown recently by Yuan et al.[28]
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Figure 1.1: (a)Possible scheme of cross-correlation measurements between two different
leads connected to a superconductor as an injector of correlated pairs to the normal side.
(b) A sample realization in a High mobility 2-dimensional electron gas (2DEG) system
having a mesoscopic beam splitter (Y-junction) with a superconducting (Nb) contact.

This thesis is organized as follows. Chapter 2 is devoted to the theoretical
background of the electrical transport and the current fluctuations. We introduce
the basic concept of electrical transport and the shot noise in normal state and
superconductor-normal metal (S-N) junction. We also briefly review the theoreti-
cal proposals and arguments about the current-current cross-correlations in three-
terminal systems. In Chapter 3, we describe the sample fabrication techniques which
have been done in our laboratory such as e-beam lithography, metallization and etch-
ing. We present also the characterization of our particular system, niobium (Nb) /
InAs-based 2DEG junction. Chapter 4 describes the reliable low-temperature mea-
surement technique for detecting the noise. We characterize our measurement setup
using a simple RC-circuit model. In Chapter 5, our main results about the shot
noise of S-N junction are presented in detail.
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Chapter 2

Transport properties of mesoscopic
S-N junction

2.1 Current fluctuations

Electronic current noise are dynamical fluctuations ∆I(t) = I(t)−〈I〉 of the electrical
current I(t) around it’s time averaged mean value 〈I〉. Here, the brackets 〈...〉
indicate an ensemble average for ergodic system. Noise is characterized by its power
spectral density S(ω), which is the Fourier transform at a certain frequency ω of the
current-current correlation function,

S(ω) = 2
∫ ∞

−∞
dt eiωt〈∆I(t + t0)∆I(t0)〉 (2.1)

Two essential noise sources1 which appear in the fluctuations of the occupation
numbers of states are thermal fluctuations from the thermal agitation of electric
charges and shot noise (partition noise) due to the quantized nature of the charge
carriers.

2.1.1 Thermal noise

At finite temperature (T �= 0), the thermal agitation of electric charges is present in
every conductor and becomes an unavoidable source of noise even in the absence of
the bias current (i.e. in equilibrium). These thermal fluctuations are called thermal
noise and also known as Johnson-Nyquist noise because they were first reported
experimentally by J. B. Johnson [43] and analyzed theoretically by H. Nyquist [44].
Nyquist relation can be derived from a simple classical model of a short-circuit
resistor. Consider a resistor R shunted by a capacitor C in Fig. 2.1. In equilibrium,
an average energy of C〈U2〉/2 = kBT/2 is stored in the capacitor. The voltage
fluctuation U at the time t0 decays with a characteristic RC-time and causes current

1We do not consider 1/f noise here.
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12 2 Transport properties of mesoscopic S-N junction

fluctuations in the resistor

I(t) =
U

R
e−(t−t0)/RC for t > t0 (2.2)

Substituting this I(t) behaviour into Eq. 2.1 yields,

SI(ω) = 4
∫ ∞

0
dt eiwt 〈U2〉

R2
e−t/RC . (2.3)

Since 〈U2〉 = kBT/C, we get

SI(ω) =
4kBT

R
· 1
1 − iωRC

. (2.4)

In the low frequency limit, ω � (RC)−1, we obtain for the thermal noise of a resistor
R,

SI =
4kBT

R
. (2.5)

We see that thermal noise does not provide additional information on the system
beyond that already known from conductance measurements. However, thermal
noise is useful for calibrating the experiment setup to extract correct data.

CR 4kT/RR
4kTR

R

(a) (b) (c)

Figure 2.1: (a)RC-circuit for deriving the thermal noise of a resistor R in thermodynamic
equilibrium with the environment. (b) Equivalent circuit with a current noise source in
parallel. (c) Equivalent circuit with a voltage noise source in series with a resistor R.

2.1.2 Shot noise

Shot noise in an electrical conductor is a non-equilibrium (Bias voltage V �= 0) noise
originated from the discreteness of the charges of electrical current. Shot noise was
first described by Schottky [2] who studied the charge-fluctuation phenomena in a
vacuum tube diode. In his work, he found a simple relation between the power spec-
tral density of current fluctuations SI and the mean value of the current 〈I〉 known
as Schottky formula S = 2e〈I〉 where e is the unit of the electron charge. The same
relation is valid in mesoscopic tunnel junctions with a high barrier of the interface.
In this case, we can derive the Schottkey’s formula in a simple manner. Since there
are only two possible outcomes from the tunnelling experiment i.e., transmission
with probability (Γ) or reflection with probability (1−Γ), the shot noise in a single
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barrier with transmission probability Γ can be described as a simple bimodal distri-
bution from the classical statistics. The probability to have nΓ transmitted particles
at time interval t is,

Pbinomial =
(

n
nΓ

)
nΓΓnΓ(1 − Γ)n−nΓ . (2.6)

where n is the total number of charge quanta q incident on the barrier. The average
of the transmitted particles 〈nT 〉 equals nΓ and the variance is given by

〈∆n2
Γ〉 ≡ 〈n2

Γ〉 − 〈nΓ〉2 = nΓ(1 − Γ)
= 〈nΓ〉(1 − Γ) . (2.7)

Since I = nT q/t, where q is the charge of each particle, the variance of the total
current is 〈∆I2〉 = q〈I〉(1 − Γ)/t . Using Eq. 2.1, for ω � t−1, the frequency
independent shot noise power is

SI = 2q〈I〉 · (1 − Γ) . (2.8)

In the limit of very low transmission (Γ � 1), i.e., nΓ · Γ � nΓ in Eq. 2.6, the
binomial distribution can be approximated by the Poisson distribution. In this case,
shot noise can be written by the well known Schottky formula [2] :

SI = SPoisson ≡ 2q〈I〉 . (2.9)

More generally, the Poisson noise is valid for a ‘dilute stream of uncorrelated particles’
each carrying a charge quantum q. The correlations among the charge carriers, for
instance Pauli exclusion principle in Fermionic statistics or Coulomb interaction
suppress the shot noise value below SPoisson. To characterize the suppression of
shot noise compared to the Poisson value, one defines the Fano factor F :

F ≡ SI

2e〈I〉 . (2.10)
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2.2 Shot noise in mesoscopic conductor
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Figure 2.2: The two-terminal conductor

Let us consider coherent transport in a mesoscopic conductor connected to two
reservoirs left(L) and right(R) (Fig.2.2). Reservoirs are considered to be in a thermal
equilibrium and no phase memory of the carriers will be remain. The reservoirs act
as sources of carriers determined by a Fermi distribution function but also can be a
perfect sinks of carriers irrespective of the energy of the carrier that is leaving the
conductor. For a macroscopic sample, the conductance is given by Ohmic scaling
law : G = σW/L where σ is the conductivity, W is the width and L is the length of
the wire. When the dimension of the sample is getting smaller, so that W becomes
of the order of the Fermi wavelength λF , the conductance does not decrease linearly
with the width. Instead it depends on the number of eigen-modes in the conductor
and shows the quantized steps [45]. This can be described by so called ‘Landauer
formula’ first derived by Landauer [46] for a 1-D conductor. The generalized multi-
channel Landauer formula at zero-temperature for a small applied voltage is given
by [47]

G =
2e2

h

N∑
n=1

Tn , (2.11)

with N the number of scattering channels at the Fermi energy and Tn the eigenvalue
of transmission coefficients. The zero-temperature shot noise power is then given by
[22],

S = 2eV G0

N∑
n=1

Tn(1 − Tn) , (2.12)

where G0 is the conductance quantum which the maximum value for single channel
can have and equals to 2e2/h. The shot noise is not simply determined by the con-
ductance of the sample but contains the products of Tn(1−Tn) i.e., transmission and
reflection probabilities of the eigen-channels. From this equation it is obvious that
the zero-temperature shot noise for a non-interacting system is always suppressed
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compared to the Poisson value. Either completely opened eigen-channel (for which
Tn = 1) or completely closed one (Tn = 0) does not contribute to the shot noise,
whereas Tn = 1/2 yields the maximum value. In the limit of low transparency,
Tn � 1 for all n, the shot noise is given by the Poisson form,

SPoisson = 2eV G0

N∑
n=1

Tn = 2e〈I〉 . (2.13)

In terms of the transmission probabilities, the Fano factor has the form,

FN =
S

SPoisson
=

∑
n Tn(1 − Tn)∑

n Tn
. (2.14)

The Fano factor varies from zero (all channels are fully open) to one (Poissonian
limit). For a single channel system, it becomes 1 − T . The general results of the
noise power for non-zero voltage and non-zero temperature is

S = 2G0

N∑
n=1

[
2kBTT 2

n + Tn(1 − Tn)eV coth
( eV

2kBT

)]
, (2.15)

where V is the voltage applied over the two terminal conductor. Note that the
general noise expression above is not a simple superposition of thermal and shot
noise. For a tunnel barrier, all the transmission coefficients are small, Tn � 1.
Substituting the Possionian shot noise in Eq.2.15, we obtain

S = 2eV G0

N∑
n=1

Tn coth
( eV

2kBT

)
= SPoisson coth

( eV

2kBT

)
, (2.16)

The crossover from thermal noise to full Poisson noise occurs at eV ≈ kBT inde-
pendent of any details of the conductor. This behavior has been observed in various
systems. See for example Birk et al.[48] who measured noise in a tunnel barrier
between a STM tip and a metallic surface.

Two examples

The results described above are valid for conductors with arbitrary (elastic) scatter-
ing transmission eigenvalues Tn. Once the transmission eigenvalues are known (e.g.
the distribution function ρ(T ) of the transmission eigenvalues), we can calculate the
average conductance 〈G〉 and the shot noise 〈S〉 of the system with the following
integration (The generalization of Eq. 2.11 and Eq. 2.12) :

〈G〉 = G0N

∫ 1

0
dTρ(T )T (2.17)

〈S〉 = 2eV G0N

∫ 1

0
dTρ(T )T (1 − T ) . (2.18)
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Figure 2.3: The distribution function of transmission eigenvalues T and the schematics for
two example cases. (a) a diffusive conductor according to Eq.2.19 with L = 15 le. (b) a
chaotic cavity according to Eq.2.20 with N1 = N2 = N .

Now let us consider two systems. The first one is a Metallic diffusive wire with
length L much greater than the mean free path le. In a diffusive conductor, electrons
are scattered elastically by randomly distributed impurities or the grain boundaries.
Thus, the energy is conserved but the momentum vector and the phase are changed.
The second system is a Chaotic cavity with the size smaller than the mean free path
le so that electrons scatter ballistically within the cavity. The cavity is connected via
two ballistic (noiseless) point contacts to the reservoirs on both sides (The systems
are shown schematically in the insets of the Fig.2.3). The distribution functions for
the transmission eigenvalues Tn of both systems are given by (from the review in
Ref.[49])

ρ(T )diffusive =
le
2L

1
T
√

1 − T
: Diffusive wire (2.19)

ρ(T )cavity =
1
π

1√
T (1 − T )

: Chaotic cavity . (2.20)

The two distributions are plotted in Fig.2.3. For the chaotic cavity, we only consider
symmetric case here i.e. two point contacts in left and right sides are identical
(N1 = N2 = N � 1. See Fig.2.3b). They are both bimodal distributions with one
peak at T � 1 and the other at T � 0 i.e., large number of almost open channels and
almost closed channels. Using Eq. 2.17 and Eq. 2.18 with the distribution functions
given above, one can obtain the average conductance and the shot noise power for
the diffusive wire,

〈G〉 = G0
Nle
L

, 〈S〉 = 2eV G0
Nle
3L

=
1
3
SPoisson (2.21)

and for the open chaotic cavity,

〈G〉 = G0
N

2
, 〈S〉 =

1
4
SPoisson . (2.22)
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The average conductance for diffusive wire is just Drude formula with N number
of eigen-channels. The suppression of the shot noise result by a factor one-third
(diffusive wire) and one-quarter (Chaotic cavity) are universal in a sense that they
are independent on specific microscopic properties of the device.

2.3 Mesoscopic S-N junction

2.3.1 General properties of S-N junctions

Andreev reflection

When a normal conductor is connected to a superconductor, a conversion of the
dissipative electrical current in the normal metal into a dissipationless supercurrent
occurred at the interface. This phenomenon was first discovered by A.E. Andreev
[50] and is known as ‘Andreev Reflection’. The mechanism of ‘Andreev Reflection’
is depicted in Fig.2.4. An incident electron slightly above the Fermi level in the
normal lead is reflected at the interface as a hole slightly below the Fermi level. The
missing charge of 2e is added to a superconductor as a Cooper-pair at the Fermi
level. The reflected hole has the same momentum as the incident electron and the
velocity of the hole is the opposite of the velocity of the electron. Therefore, this
process is called ‘retro-reflection’. Andreev reflection(AR) is a two-particle process,
therefore the probability of Andreev reflection is described in terms of T 2 [49, 51]:

RA =
T 2

(2 − T )2
, (2.23)

and the corresponding conductance of an S-N junction is then,

GA =
4e2

h
· RA . (2.24)

In ballistic junction (T = 1), GA = 4e2/h = 2GN is the double of the normal
conductance GN and in the tunnelling limit (T � 1), GA = e2/h T 2 � GN . We
will discuss this behavior further in the next section.

The spectral conductance

When a potential barrier is introduced at the S-N interface, Andreev reflection prob-
ability, RA is found to be less than one because now the normal reflection (specular
reflection of the electron) also can happen. This problem was first studied by Blon-
der, Tinkham and Klapwijk in a 1-D ballistic S-N junction and their results are
known as BTK model [52]. In the BTK model, the potential barrier at the S-N
interface is approximated by a δ-shape barrier, the interface is characterized by a
single transparency and a step-like increase of the superconducting pair potential
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Figure 2.4: (a)Normal reflection by an insulator (b)Andreeve reflection by a superconduc-
tor. The retro-reflected hole takes the same path as the incident electron in reverse. Some
relevant length scales are depicted.
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Figure 2.5: (a) Voltage dependent differential conductance in units of normal-state conduc-
tance for various transmission coefficient T . It shows the continues variation from metallic
to tunnelling limit.(b) Zero-bias differential conductance normalized by normal-state con-
ductance versus temperature for different transmission coefficients T .

is assumed at the interface. More recently, Cuevas et.al [53] found an equivalent
expression to the BTK model through a single-mode contact between a supercon-
ductor and a normal metal using so called ‘Hamiltonian approach’ combination with
the non-equilibrium Green function technique. They considered the case Lϕ � L
where Lϕ is phase breaking length and L is the sample length (see Fig. 2.4) so
that the spectral current is constant along the sample [54]. In this regime, we can
write the spectral current as a function of the spectral conductance GNS(E) and
the difference of distribution function f between the right and left reservoirs :

I(V, T) =
1
e

∫
dE GNS(E)(f(E − eV ) − f(E)) . (2.25)

The current expressed through the spectral conductance GNS(E) is a function of
applied voltage V and temperature T. The bias dependent spectral conductance for
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the single channel case (at T = 0) is given by [53]

GNS(V, 0) =
4e2

h




T 2

(2−T )2−4(1−T )(eV/∆)2
eV ≤ ∆ ,

T 2

T+(2−T )
√

1−(∆/eV )2
eV > ∆ .

(2.26)

Note that the spectral conductance GNS(V ) varies between (4e2/h)T 2/(2 − T )2

(Eq. 2.24) for V = 0 and 4e2/h for eV = ∆. At finite temperature, the differential
conductance is the integral of the spectral conductance multiplied by the energy
derivative of the Fermi distribution function [54]:

GNS(V, T) =
1
e

∫
d∆f

dV
GNS(E)dE =

1
4kBT

∫
dE

GNS(E)
cosh2 ( E

2kBT)
. (2.27)

We calculated both equations (Eq. 2.26 and Eq. 2.27 for T = 0) numerically to plot
the bias dependent differential conductance dI/dV (V ) and temperature dependent
linear conductance dI/dV (T) curves. The results are shown in Fig.2.5 for a number
of different transmission coefficient T .

Proximity effect

The proximity effect between a normal metal and a superconductor is a consequence
of the correlations induced in the normal metal by Andreev reflection. In order to
study the diffusion of the Andreev pair (electron-hole pair) in the normal side, we
consider a normal metal in dirty limit when the elastic mean free path le is much
smaller than the sample length L and L itself is smaller than the phase breaking
length Lϕ (le � L � Lϕ). Let us consider the trajectories of an electron incident to
the N-S interface with the energy ε = E−EF above the Fermi level and the reflected
hole retracing the trajectory of the electron. The wave-vector mismatch δk = ε/�vF

between the electron and the hole accumulate the phase difference between them.
After the diffusion over a distance L from the interface, the phase shift 2δkL between
two particles is of order π at a distance equal to the energy dependent coherence
length given by Lε =

√
�D/ε. Here � is the Planck constant and D is the diffusion

constant in normal conductor. At the same time, the trajectories of electron and
hole are shifted by a distance of order of the Fermi wavelength. Further diffusion
of the two particles will be different and the pair will break apart. Therefore, this
coherence length Lε characterizes how far the two electrons from a Cooper pair
leaking from the superconductor will diffuse in coherent maner in the normal metal.
Electron-hole coherence is hence maintained in an energy range of εc = �D/L2. This
characteristic energy is called Thouless energy or correlation energy and is of great
importance in proximity structures [55]. The proximity induced superconductivity
is also dependent on the interface quality between superconductor and normal metal
since the effect decays exponentially with the interface resistance.
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2.3.2 Shot noise in S-N junction

Now, we turn to the shot noise in S-N junction. The conductance and the shot noise
of an S-N junction are given by [49, 56]

GNS = G0

N∑
n=1

2T 2
n

(2 − Tn)2
, (2.28)

SNS = 2eV G0

N∑
n=1

16T 2
n(1 − Tn)

(2 − Tn)4
, (2.29)

As for the normal case, scattering channels with Tn = 0 and Tn = 1 does not
contribute to the shot noise. However, the intermediate transmission channels con-
tribute quite differently than in the normal case (Eq. 2.12). We obtain for the Fano
factors for S-N junction,

FS =
SNS

2eV GNS
=

∑
n

16T 2
n(1 − Tn)

(2 − Tn)4
/ ∑

n

2T 2
n

(2 − Tn)2
. (2.30)

In the case when all the eigen-channels are non-interacting and Tn = Γ for all n,
shot noise can be written as [57]

SNS = 2eV G0N
16Γ2(1 − Γ)

(2 − Γ)4
=

8(1 − Γ)
(2 − Γ)2

SPoisson . (2.31)

For low-transparency Γ � 1, this simplifies to the double of the Poisson noise
SNS = 2SPoisson. Similar to the normal case, this can be interpreted as the result of
uncorrelated transfer of charge 2e. Since Eqs.2.28 and Eq.2.29 are valid for arbitrary
scattering region [49], we can integrate Eqs.2.28 and Eq.2.29 over the distribution
function of the transmission coefficients given by Eq.2.19 and Eq.2.20 as we did in
the normal-state :

GNS = G0N

∫ 1

0
dTρ(T )

2T 2

(2 − T )2
(2.32)

SNS = S0N

∫ 1

0
dTρ(T )

16T 2(1 − T )
(2 − T )4

. (2.33)

For a disordered S-N junction, we find an average conductance which is equal to that
of the normal state of the junction : 〈GNS〉L = 2〈GN 〉2L = 〈GN 〉L for le � L � Nle
[56] and the noise power having two times larger Fano factor than that of a normal
diffusive wire:

SNS =
2
3
SPoisson . (2.34)
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For a (symmetric)chaotic cavity in series with a superconductor, we get [49, 51],

GNS = G0(2 −
√

2)N (2.35)

SNS =
1

4(
√

2 − 1)
SPoisson ≈ 0.6 SPoisson . (2.36)

De Jong and Beenakker [51] studied in the case of a disordered N-S junction with a
tunnel barrier at the interface. They described the crossover between the two limits
which are Ballistic (Eq.2.29) and a diffusive (Eq.2.34) limit for the normal metal.
They found out that only for two particular cases namely, for a high tunnel barrier
and for a diffusive N-S junction, the Fano factor is doubled with respect to the
normal state value. For other cases, the ratio FS/FN is more complicated. We come
to this point later in Chapter 5 and discuss it in more detail in order to interpret
our shot noise results in S-semiconductor 2DEG structure.

2.4 Cross-correlation in multi-terminal hybrid S-N beam splitter

So far, we have considered only current fluctuation measurements in a two-terminal
geometry. However, one can measure the noise in the multi-terminal cases, i.e.,
cross-correlations of fluctuations between different leads [22] and this provides a
wealth of new experiments. In this section, we will restrict ourselves to the case
of three-terminal device and when the shot noise is expressed in terms of transmis-
sion probabilities only. As the shot-noise measurement provides the information on
the statistics of the electron transfer, the cross-correlation measurements are also
expected to yield the different results for the systems obeying different statistics.
The well known example is the famous optical experiment by Hanbury-Brown and
Twiss (HBT) [25]. In the HBT experiment, Hanbury-Brown and Twiss measured
the intensity-intensity correlations of the light of a star in order to determine its
diameter [25]. In a subsequent laboratory experiment, the light of a mercury vapor
lamp was divided by a half-silvered mirror into a transmitted and a reflected beam
whose intensity were measured by the two detectors [58]. They measured positive
correlations as long as the two beams are phase-coherent. This positive correlations,
found in their experiment, can be interpreted as an enhanced detection probabil-
ity of two photons in coincidence. This behavior is often called bunching for the
particles obeying Bose-Einstein statistics. On the other hand, the partitioning of
a stream of particles obeying Fermi-Dirac statistics leads to an anti-bunching be-
havior due to the exclusion principle, resulting negative correlations of the intensity
fluctuations. This was confirmed by a Fermionic version of HBT experiments in
a single-mode, high-mobility semiconductor 2DEG systems [14, 23]. Furthermore,
the bunching-like behavior (positive correlations) has been predicted theoretically
in electronic multi-terminal devices in which at least one electrode is a supercon-
ductor [59, 60, 61, 27, 40, 62]. In the followings, We present briefly the relevant



22 2 Transport properties of mesoscopic S-N junction

theoretical proposals and arguments for the detection of positive correlations in the
three terminal S-N beam splitter geometry.

Martin showed theoretically that when the junction contains no disorder, so
there is only pure Andreev reflection happens, the noise correlation vanish [60]. This
argument leads to the fact that the presence of disorder in S-N interface enhances the
positive correlations in Fermionic system with a superconducting injector [60, 61].
In Ref. [61], the authors used BTK model to characterize the S-N interface with
increasing barrier height and found large enhancement of noise correlations. Burkard
et. al. showed Spin-singlet state leading to a bunching behavior enhances the noise
correlations [29]. In the successive paper by Recher et.al. [27], a setup that involves
a superconductor coupled to two quantum dots are proposed. See Fig. 2.6.(b). In
their setup, the Cooper pair is breaking up and each electron penetrates separately
through different normal leads. A simultaneous emission of the two electrons at
different normal out-puts will make a positive correlations.
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Figure 2.6: Schematics of different theoretical models for detecting positive correlations.
(a) The sample schematics from Ref.[60] and [61]. Andreev reflection is between 3 and 4.
The shaded triangle present a beam splitter. (b) The two spin-entangled electrons forming
a Cooper pair tunnels from the superconductor, S, to two dots D1 and D2 (From Ref. [27]).
The Dots are coupled to normal leads N1 and N2 with tunnelling amplitude TDL. µi

denotes the chemical potentials in three leads. (c) A chaotic quantum dot connected to one
superconductor and two normal leads via quantum point contacts (Ref.[40]). Γs is for the
presence of normal backscattering at the S-N interface. (d) Three terminal beam splitter
from Ref. [62]. All three terminals are connected by tunnel junctions with conductance g, g1

and g2 via a small normal island.
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More recently, the same authors showed that if the normal leads are resistive,
the probability for two electrons to tunnel into the same lead is suppressed because
the dynamical Coulomb blockade effect is generated between the leads [63]. Ref. [62]
considered a system which three terminals are connected by tunnel junction to a cen-
tal channel-mixing island (tunnel limit). They found large positive cross-correlations
of the currents in the two normal terminals in a wide parameter range taking the
proximity effect into account. A system consisting of a chaotic quantum dot con-
nected via quantum point contact to one superconducting and two normal leads is
considered in Ref. [40]. The authors found the large positive correlations for wide
range of junction parameters and this was survived even in the absence of a prox-
imity effect for non-ideal S-N interface. From their calculations, the correlation was
enhanced by normal backscattering at the S-N interface. However, if the interaction
plays a crucial role in the system, the simple connection between statistics and the
sign of current-current correlations is not valid anymore [26].

In summary, we presented the number of theoretical proposals/arguments that
support for measuring the positive correlations. It is preferable for the nature 2to
show us the positive sign in our correlation experiment in particular, the three
terminal S-N beam splitter geometry.

2Of course, this holds clearer in the simplest case and this is why we need very reliable measure-
ment technique avoiding any unwanted noise sources. At the same time, the measurement setup
should be sensitive enough to detect very small fluctuations which we want to measure eventually.
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Chapter 3

Sample Preparation

3.1 Micro-fabrication process

In order to investigate the quantum phenomena, the sample should be small enough
so that the interesting quantum effect is dominant over the classical effects1. For
this, a sub-micrometer patterning is required and recent development of the fabri-
cation technology make this possible to realize a sub-micrometer size features on
an electronic circuit chip. In this chapter, we will describe the micro/sub-micro
fabrication techniques to make our mesoscopic S-N hybrid device as follows:

• InAs based semiconductor hetrostructure was fabricated using a molecule
beam epitaxy (MBE) technique.

• A low-resistive ohmic contact to the 2DEG was made by depositing and alloy-
ing the Au-Ge-Ni multilayer on the 2DEG wafer.

• MESA area was formed by Electron-beam lithography combined with etching
technique.

• A clean junction between 2DEG and superconductor was made by shadow
angle evaporation of niobium(Nb). The angle evaporation ensures an side-
contact between Nb and 2DEG layer (See the sample layout in Fig.3.5).

• Finally, a sub-micron Y-branch beam splitter was made by electron-beam
lithography combined with a wet etch.

Fig. 3.1. shows an example of original sample layout and the final sample
structure after the fabrication process. For next two sub-sections, we will briefly
introduce the lithography technique, metallization and etching technique before we
continue with our sample processing.

1Most of cases, we also need a low temperature in order to see the quantum effect in such a
small structure and we will discuss about the low temperature measurement in next chapter

25
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MESA

Nb

ohmic
contact

=

Figure 3.1: An example of sample layout(Left) and real structure after the main fabrication
process(Right).

3.1.1 Electron-beam lithography

Lithography is the key technique to transfer the designed pattern onto the surface
of a solid materials such as a silicon or other semi-conductor substrate. There are
many different lithography techniques depend on which kind of source is used to
produce a beam of using. The most widely known lithography technique amongst is
UV(Photo)-lithography and Electron-beam lithography(EBL). In industry, Photo-
lithography is widely used because it allows a mass production of the Integrated
Circuit(IC) chips but It needs a Pre-patterned Mask and the resolution is limited
by the wavelength of UV ray. EBL is an high-resolution patterning technique with
high-energy electron beams expose onto the electron-beam sensitive resists 2. Since
the quantum mechanical wave lengths of high-energy electrons are very small, the
resolution of the e-beam lithography is not limited by the diffraction of the beam.

Fig. 3.2 shows a block diagram of a typical electron beam lithography system.
At the top of the column, electrons are emitted from the filament and focused onto
the substrate on the specimen stage. The column is responsible for forming and
controlling the electron beam with many elements such as electro-magnetic lenses
for deflecting the beam, a blanker for turning the beam on and off, a stigmator for
correcting any astigmatism in the beam, apertures for helping to define the beam,
alignment systems for centering the beam in the column, and an electron detector for
inspecting the structures on the sample. Underneath the column, there is a chamber
containing a specimen stage for moving, rotating and tilting the sample inside and
also the loading and unloading facility is equipped. A vacuum system, associated
with the chamber is needed to maintain an appropriate vacuum level throughout
the machine and during the load and unload cycles. A set of control electronics
supplies power and signals to the various parts of the machine and the water cooling
lines keeps the temperature for the electronics and the pumping system to work
properly over the whole stage. Finally, the system is controlled by a computer
with a lithography software, in our case, ELPHY Quantum from Raith GmbH. This

2PMMA (polymethyl methacrylate) is commonly used
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Figure 3.2: Schematic of typical e-beam lithography system. Descriptions are in the text.

lithography software controls the setting up the exposure job, loading and unloading
the sample, aligning the electron beam, and sending pattern data to the pattern
generator. In our lab, we have a Jeol JSM-IC848 SEM e-beam writer equipped with
2+ Motor control by Raith GmbH for a systematic movement of the specimen stage
and house-made external field compensator.

In this thesis, Electron-beam lithography was used for making an Ohmic con-
tact followed by evaporation(metallization), MESA definition and sub-micron beam
splitter followed by wet etch. Typical lithography steps for both additive (i.e. met-
allization) and subtractive (i.e. etch) process are shown in Fig.3.3.

3.1.2 Metallization and etching technique

After the development of the resist, desired pattern can be formed by either sub-
tractive (i.e. etch) or additive (i.e. metallization) way. In these ways, one can
transfer their own structures to the substrate and finally make an electronic cir-
cuit. Metallization is the way to transfer the lithographically defined patterns onto
the electronic circuit by depositing a thin metallic film on the substrate (Additive
pattern transfer process). In industry, this is the most common way to make the
metallic interconnections among the circuit elements together with the etching tech-
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e-beam
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Figure 3.3: Typical lithography steps for additive (Left) and subtractive (Right) process.
(a) Exposure of PMMA resist to e-beam (b) Development of PMMA. (c1) Evaporation of
thin metals (c2) Etching of the heterostructure (d1) Lift-off (d2) Stripping

nique. There are a variety of metal deposition techniques in thin film technology
but in our lab, we mostly use ”Thermal evaporation”.

A typical evaporation system has a vacuum chamber (Pressure is ∼ 10−5 Torr or
better which is called HV ) contains a vapor source and a substrate. When the vapor
source is heated, the vapor pressure of the evaporant (The metal to be evaporated,
it is also often called ’target’) becomes substantial and liberated atoms are sent out
into the vacuum chamber and stick to the substrate where the metal film is formed.
Among the different thermal evaporation systems, we use a Balzers PLS 500 system
which uses electron-beam source to target the desired materials to be evaporated.
The electron beam emitted from a heated wire (thermionic filament) is then focused
by magnetic field and hits the surface of the evaporant which will be heated and
evaporated. The vacuum of the evaporation chamber is typically � 10−6mbar and
using the Meissner cooling with liquid N2, it can go down to � 10−8mbar.

Etching is subtractive pattern transfer process from lithographically defined pat-
tern. There are two available etching techniques in our lab, one is a wet etch us-
ing chemical solution (etchant) to dissolve the materials on the wafer surface and
the other one is a Reactive Ion Etch (RIE)3, which uses gaseous chemical etchant

3The name reactive ion etch is misleading since the gases in this etching process are not neces-
sarily reactive. For instance, argon ions are frequently used to increase the ion bombardment and
Argon is an inert gas which is not chemically reactive.
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Figure 3.4: The schematics of Balzers PLS 500 thermal evaporation system.

like plasmas or ions. The wet etch usually has an isotropic etch profile while the
dry(plasma) etch can give both isotropic and anisotropic etch profile depending on
whether the etch process is purely chemical or physical. Plasma etch can be used
for pre-cleaning of the substrate or removing the residual organic materials on the
surface of the sample before evaporation. Actually, during our sample process, there
is a oxygen plasma cleaning step just before the Au-Ge-Ni multilayer deposition (See
section 3.2.1 for the details).

3.2 InAs-Heterostructures

Semiconductor two-dimensional electron gas (2DEG) system became very widely-
used model system on short length scale such as mesoscopic or nanoscale conductors.
This semiconductor 2DEG has a number of properties suitable for studying quantum
effect in mesoscopic systems. It has an extremely low scattering rate and high
electron mobility compare to those in bulk semiconductors or metal films. Its carrier
density is also very low which means a large Fermi wavelength and the elastic mean
free path can be found in 2DEG. In case of a GaAs-AlGaAs heterostructure 2DEG,
the carrier density is ne = 4×1011cm−2 and the mobility µ ranges from ∼ 104cm2/V·s
to ∼ 106cm2/V·s . This can give the Fermi wavelength of λF = 40 nm and the
mean free path le from 10 nm up to 10 µm [64]! In our experiment, an InAs-
inserted InAlAs/InGaAs heterostructures was used having InAs quantum well as a
conducting 2DEG layer (Fig.3.5). InAs-based 2DEG has an higher carrier density
and lower mobility than the GaAs based 2DEG ne = 2.1 × 1012 cm−2 and µ =
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Figure 3.5: Schematic layer structure of an InAs-inserted InGaAs/InAlAs heterostructure
with niobium contact and the corresponding energy band diagram.

5 ∼ 6 × 104 cm2/V·s corresponding to a Fermi wavelength of λF = 18 nm and an
elastic mean free path of le = 1.2 µm. However, the advantage to use InAs 2DEG
for our study in S-N hybrid structure was that the InAs 2DEG has no Schottky
barrier when it forms a junction with a metal ensuring the good proximity effect
in the normal side of the junction. InAs based heterostructures was fabricated by
MBE technique at Basic research laboratory in NTT, Japan. MBE process is based
on thermal evaporation of pure materials in an ultra high vacuum chamber (base
pressure ≈ 10−11 mbar) and produces an high quality materials with extremely high
carrier mobility. This heterostructure and its energy diagram is depicted in Fig.3.5
together with Nb-side contact.

3.2.1 Ohmic contact

Unlike the thin metal film, semiconductor heterostructure need a special way to have
a ‘good’ ohmic contact. To make a good ohmic contact ensuring very low resistance
and a linear current-voltage characteristics has been one of the very important re-
quirements in developing the semiconductor heterostructure 2DEG device. Since a
Schottky barrier is formed at the semiconductor-metal interface, a heat treatment
is needed to alloy the metal into the surface of the semiconductor heterostructures
in order to make a good ohmic contact. The Au-Ge-Ni multilayer is commonly used
to make an ohmic contact to n-type GaAs systems [65] and we adapt this technique
to our InAs-based heterostructure. Either by UV-lithography or e-beam lithogra-
phy, we transfer the pattern into the substrate. After the exposing of the resist
to the UV-light/e-beam, we develop the resist and get the desired pattern on the
substrate4. Since the residual organic resist on the semiconductor surface will block
the diffusion of metal alloy, before metal deposition, the patterned wafer is cleaned
in the RIE chamber by oxygen plasma. During the oxygen plasma process, the oxide
layer is formed on the semiconductor surface and this surface oxide also affect the

4See Fig.3.1 for the Ohmic contacts pattern(both layout and the real structure after the pro-
cessing).
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Figure 3.6: The plots of contact resistance RC and resistivity ρ for different annealing
temperatures and time. We can deduce the values RC and ρ from y-intercept and slop of
the linear plots. Left one is measured at liquid helium and right one is at room temperature.
Inset of the left plot is the sample geometry for this check.

alloying reaction between Au-Ge-Ni and the heterostructure so, we remove oxide
layer by dipping the sample in concentrate HCl solution (38 %). The metal layer
structure of Ni/Au/Ge-Au/Ni with eutectic Au-Ge mixture of 88:12 wt% were evap-
orated in Balzers PLS 500 system. The deposition of first 6-nm-thick Ni layer of
Au-Ge-Ni multilayer helps to have a low contact resist [66]. After the evaporation,
the sample was alloyed in an annealing oven under the continuous flow of forming
gas (90 % N2 + 10 % H2). Typical alloying temperature is 400 ∼ 500 ◦C for GaAs-
based heterostructure. However, for InAs-based heterostructure, we have to use
lower temperature because the heterostructure was formed at lower temperatures.
The quality of the InAs 2DEG was degraded after the annealing of over 400 ◦C5.
After the annealing of the multi-layer, we check the ohmic contact resistance and the
resistivity (or sheet resistance) of the 2DEG both at room temperature(R.T.) and
liquid helium temperature(4.2 K). We measure the resistance of the bar geometry
consisted with a series of the square of length L and width W (Inset of Fig.3.6).
We show the measured total resistance R = 2RC + ρL/W versus L/W in Fig 3.6.
where RC is the contact resistance and ρ is the resistivity of the 2DEG. From the
linear fit of the data, we deduce contact resistance RC and the resistivity ρ. Table
4.1 summarize the data for few different annealing parameters to get the optimum
value of RC and ρ.

5we measured contact resistance and resistivity for different annealing temperatures and found
an optimum parameters.
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Table 3.1: Summary of Ohmic-contact resistance and resistivity of the 2DEG for different
annealing parameters (temperatures and time). It was checked at R.T. and 4.2 K respec-
tively.

Annealing condition RC(Ω) ρ(Ω)
R.T. 4 K R.T. 4 K

275◦C, 1 min 30 23 318 199
275◦C, 2 min 99 89 176 52
275◦C, 4 min 87 83 191 62
300◦C, 1 min 51 48 166 32

3.2.2 MESA and fine etching

Both large scale MESA definition and fine etching of the beam splitter geometry
was formed by chemical wet-etch. We used H3PO4 : H2O2 : H2O = 1 : 1 : 100
and this phosphoric etchant removes InAs based heterostructures isotropically and
non-selectively. The etching rate for InAs-based heterostructure is ∼ 1 nm/sec. As
an alternative, H2SO4 : H2O2 : H2O = 3 : 1 : 100 was used as well and it gives
approximately the same etching rate. For the side-gating purpose, selective etching
often used and one example is Citric acid : H2O2 = 1:1 [67]. This is selective for
In(Ga)As against other layer materials. Fig.3.7 shows an example of large scale
MESA area and fine etched lines with wet etchant.

3.2.3 niobium deposition

We choose the niobium as the superconducting side of our sample because it has
a large superconducting gap and good stability under the thermal cycling. Semi-
conductor contact with niobium in particular with InAs-based heterostructure have

Alignment marks

MESA edge

Nb

~ 60 nm

20 µm 200 nm
fine etched lines

Figure 3.7: Left: MESA definition etch in prior to the beam splitter fine etch. Etching
depth is about 60 nm. Right: Some examples of fine etched lines. Both are done by wet
etching technique with isotropic and non-selective wet-etchant.
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been fabricated intensively for studying the novel quantum effects in super-semi con-
ductor junctions. This is because InAs has no Schottky barrier with metal when
it forms a junction. However, the conventional shadow evaporation technique with
PMMA as a top layer and a copolimer PMMA-MMA as a bottom layer does not
work for fabricating the refractory metals such as niobium or tungsten. The prob-
lem is refractroy metals usually need an high evaporation temperature and ultra
high vacuum to process it. This brings about the mechanical instability of the
conventional resists during the evaporation of the refractory metals. The resulting
out-gasing of the resist and consequent contamination degrade the electronic prop-
erties of deposited metal [68]. Various methods have been attempted to improve the
shadow evaporation technique with more stable resists and mask structures [69, 68].
We tried a PMMA-Ge-PMGI tri-layer resist system to fabricate Nb film. We were
able to have the Nb film of Tc � 8K for the wire width of 1µm or wider. The
thickness of Nb was 80 nm. This tells that the method we tried can be applied to
fabricate Nb film. However, all the 2DEG sample with side contact to the Nb was
made from our strong collaborator at BRL-NTT in Japan because they experienced
to fabricate this high quality S-N hybrid system for many years. Niobium has a
critical temperature of ∼ 9.3 K and critical field ∼ 2 T at 0 K in Bulk[70]. The
energy gap of niobium ∆(0)/kBTc = 1.9 which is experimentally deduced [70], is not
far from the BCS value (1.76). The superconducting transition of the Nb film was
tested via two contacts bonded to the Nb electrode. The transition temperature
Tc of the film was measured to be 8.5K (See Figure 3.8). A suppression of Tc in a
film from its bulk value of 9.3 K is commonly observed, as is a similar suppression
of Tc in micro-fabricated structures. The relative modest suppression of ≈ 1 K is in
agreement with previous work, see for example [71].
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Figure 3.8: The superconducting transition temperature of the niobium measured with
two probes on a structured device. It shows Tc ∼ 8.5 K



34 3 Sample Preparation

MESA

Alignment mark

Nb

2DEG
Nb

Chip carrier

mesoscopic 
beam splitter

Figure 3.9: The overview of the real sample. From the lower left to the right : The device
glued in a chip carrier and ready for the measurement. The MESA area in 2DEG and Nb
contact. The final view of a sub-micron beam splitter geometry.

3.2.4 Bonding and final

The sample fabricated up to now need to be connected itself to the measurement
equipment for performing the experiment. For this, we have an Ohmic contact on
the sample as a bridge between mesoscopic device and macroscopic measurement
setup.

The final step for the device to be ready for measurement is to connect the sample
to the chip-carrier then the chip-carrier is further connected to the measurement
setup. The sample substrate is glued into a chip-carrier with Epoxy and we connect
the chip-carrier to the ohmic contact on the substrate using ultrasonic bonding
machine with a 50-micrometer thick aluminium wire. When the sample is in the
chip-carrier, we can mount it in the chip-carrier socket of one of the cryogenic systems
for the measurement. Fig. 3.10 shows a sample after all the fabrication process and
ready for the measurement.

3.3 Characterization of the sample

3.3.1 InAs 2-dimensional electron gas (2DEG)

When the sample is ready for the measurement, we first, check the device at room
temperature using the R.T Box before real measurement at low temperature using
the cryogenic systems. We check the ohmic contact of the 2DEG device at room
temperature and the 4.2 K using the dip stick in the liquid helium dewar as we
described in sec.3.2.1. When it shows normal value for the Ohmic resistance and the
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Figure 3.10: QHE measurement of InAs 2DEG system. inset: typical Hall bar geometry
for QHE measurement.

resistivity, we continue the characterization of our 2DEG using Hall and Shubnikov-
deHaas (or SdH) measurement in order to deduce the carrier density ns and the
mobility µ individually.

Hall measurement is one of the basic characterization tool for the semiconductor
2DEG system because we can obtain the carrier density ns and the mobility µ
individually from the measured resistivities ρxx and ρyx. At a low magnetic field,
the longitudinal resistance is constant while the Hall resistance increases linearly
with magnetic field in agreement with semiclassical Drude model. From the low-
field resistivities, we obtain the carrier density ns and the mobility µ as follows;

ns =
dB

|e|dρyx
=

I/|e|
dVH/dB

(3.1)

µ =
1

|e|nsρxx
=

I/|e|
nsVxxW/L

. (3.2)

Alternative to the Hall measurement, there is another simpler way to determine
the characteristics of the semiconductor 2DEG called ”van der Pauw” method [72].
Due to its’ convenience, the Van der pauw method is widely used in the semicon-
ductor industry to determine the resistivity of uniform samples. According to the
original paper by van der Pauw, one can use arbitrarily shaped specimen without
holes nor nonconducting islands or inclusions and thin-plate sample containing four
very small ohmic contacts placed on the periphery (preferably in the corners) of the
plate. A schematic of a rectangular van der Pauw configuration is shown in Fig.3.11.
The current is forced one edge while the voltage drop is measured in the opposite
edge. By shifting the role of the contacts by 90◦ and inverting the current direction,
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Figure 3.11: Schematic of a rectangular van der Pauw sample to determine the resistivity.

irregularities in the current flow can be ruled out. Taking the mean value of both
measurements and weighting this with a characteristic function f , yields

ρxx =
πd

ln 2
RAB,CD + RBC,DA

2
f
(RAB,CD

RBC,DA

)
. (3.3)

Where, d is the thickness of the lamella. The weighting function f can only be
expressed in the implicit form

cosh
[RAB,CD − RBC,DA

RAB,CD + RBC,DA

]
=

1
2

exp
ln 2
f

. (3.4)

We can calculate f numerically and it does not deviate much from the unity unless
the measured resistances differ strongly from each other.

However, at high magnetic field, the measurements above are not valid anymore.
This is due to the so called ’Landau quantization’6. In the Hall bar geometry,
there are pronounced oscillations in the longitudinal resistance which are called
Shubnikov-deHaas (or SdH) oscillations and the plateaus are appear in the Hall
resistance corresponding to the every minimum in the longitudinal resistivity. This
quantized Hall effect is known as quantum Hall effect (QHE) and first demonstrated
by von Klitzing et.al [73].

Experimental work of QHE can be done by preparing a rectangular sample and
measuring the longitudinal and transverse resistance of the sample. The inset in
the Fig. 3.10. shows a schematic diagram of a typical 2DEG sample used for QHE
measurement. From SdH oscillations, we obtain the carrier density ns by

ns =
2e

h

1
(1/B1) − (1/B2)

. (3.5)

Where B1 and B2 are the magnetic field values for corresponding to two successive
peaks. We choose many different values of B1 and B2 and plot the positions of the

6Quantized Hall effect is a subtle phenomenon and to explain this is beyond the scope of this
work. We rather focus on practical use of QHE to characterize the semiconductor 2DEG.
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maxima in Rxx as a function of 1/B then, they lie in a strait line and the slope of
the line yields the electron density ns [74].
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Chapter 4

Measurement setup

4.1 Low temperature measurement

Most of the quantum effects in mesoscopic system require a low temperature of the
order of a few Kelvin(K) or lower to be detected. In today’s laboratory in condensed
matter physics experiment, one uses cryo-liquids to cool down the samples. Typically
liquid nitrogen N2 which has the boiling temperature of 77 K is used to pre-cool
the cryostat or to keep the cooling of the outer jacket of the cryostat to minimize
the heat transfer through the radiation shield resulting the evaporation of the liquid
helium in helium bath. Using the liquid helium dewar, one can reach 4.2 K which is
the boiling point of 4He at the pressure of 1 bar. It can be further cooled down by
pumping on the vapor above the liquid because the vapor pressure decreases roughly
exponentially with decreasing temperature [75]. However, there is a limit for the
minimum reachable temperature by pumping on a bath of the cryoliquids and the
practical low temperature limits are 1.3 K for 4He and 0.3 K for 3He (See Fig. 4.1 ).
The 3He-4He dilution refrigeration method using a mixture of two helium isotopes
can achieve the minimum temperature of ∼ 15 mK. During this thesis work, 4He
and 3He-system from Cryogenics Ltd. have been used with the base temperatures
of 1.7 K and 280 mK respectively.

Figure 4.1: Vapor pressure of well
known cryoliqids. The dots in the
lines shows the practical limit for
the low temperatures obtainable by
reducing the vapor pressure of the
cryoliquids. Picture taken from
Ref. [75].

39
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4.2 Noise measurement

Figure 4.2 shows the experimental setup for the typical conductance and noise mea-
surements. For both measurements, the sample is DC-current biased through an
high ohmic bias resistance RB � Rsample in series with the measured sample. RB is
thermally anchored at the the bottom of 1 K - pot in order to minimize the thermal
noise of the bias resistance itself. All the measurement lines are filtered at low tem-
peratures by lossy microcoax cables. At the top of the cryostat, additional π-filters
are used for RF-filtering of all the wires at room temperature. However, the leads
for the detecting the fluctuations are filtered only at low temperature. Short SMA
cables are used to connect between the top of the cryostat and the input of the LI75
amplifiers directly. We used two voltage sources for feeding the AC and DC bias to
the sample. An Hewlett Packard 3245A voltage source produces the DC bias and
Stanford Research DS360 function generator provides an AC current(f < 100Hz).
These two currents are coupled by a passive 1:4 transformer whose ground is decou-
pled from the ground current of the rest of the circuit and used to determine the
differential resistance of the sample. Two ultra-low noise amplifiers (LI-75, NF cor-
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pre-amplifiers

Spectrum 
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 300 K
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Figure 4.2: The schematic of the noise measurement setup consisting low temperature fil-
tering with thermocoax cables and π-filters at room temperature. The differential resistance
of the sample was measured using Lock-in technique. See text for the explanation.
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poration with fixed gain 100) followed by two low-noise amplifiers (Stanford SR560)
are used to measure the voltage fluctuations across the sample. All amplifiers are
powered by independent sets of batteries to avoid cross talk. The voltage signals
from the amplifiers are cross-correlated (See Figure 4.3b) and fed into a spectrum
analyzer HP 89410A which performs a fast Fourier transformation of the two output
voltage signals V1, V2 and a vector averaging over successive temporal traces. The
cross-correlation technique[76], as we will show in next section, eliminates the volt-
age noise contributions of the measurement setup. A typical noise measurement was
done in the frequency range between 30 and 200 kHz and the resistance of the sam-
ple was about 2kΩ. The spectra were measured over 401/802 points and averaged
500 times or more depending on the spectrum range. However, in order to avoid
1/f -noise at higher bias currents, most of the reasonable spectra were taken at the
frequency of ∼ 100 kHz or higher. At this frequency range, there is a RC-damping in
the measurement circuit to the measured signals and we need to calibrate the mea-
sured data to deduce the correct value. We will discuss about the data calibration
in next section.

4.2.1 Low frequency noise detection scheme
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Figure 4.3: (a) Conventional way of noise detection circuit with one amplifier. (b) Cross-
correlation technique, analogous to the four-point method in resistance measurements with
two amplifiers in parallel.

Before continue to characterize our measurement setup, we would like to describe
the cross-correlation technique known as a reliable and sensitive way to detect the low
frequency noise of the device [76]. From the Fig.4.3a, we denote RS as a resistance
of the sample at temperature T, RL is the resistance of the leads at temperature
TL, and v and i are the voltage and current noise of the amplifier respectively. The
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conventional way to detect the voltage noise fluctuation 〈V 2〉 across the sample is to
send the output of a low-noise voltage amplifier to a fast Fourier transform spectrum
analyzer, which gives the spectral density of the total voltage noise in a bandwidth
∆f . Then the square of the total voltage noise is

〈V 2〉 = 〈V 2
S 〉 + (RS + RL)2i2 + v2

0(1 + f1/f) + 4kBTRL∆f . (4.1)

where we have written v2 = v2
0(1 + f1/f) to emphasize the 1/f voltage noise of

the amplifier below a characteristic frequency f1. From the above expression, we
see that the determination of the sample noise requires the knowledge of the noise
characteristics of the amplifier (v, i, f1) and of the temperature and resistance of the
leads. We can use a correlation method shown in Fig.4.3b which is analogous to the
four-point method used to measure a resistance. Here, by measuring the voltage
noise with two independent amplifiers in parallel and multiplying the output, the
voltage noise contribution of the leads and the amplifiers is eliminated (See Fig.4.7
for the comparison of these two methods). The cross-correlation spectral density of
the two output voltage of amplifier 1 and 2 is, referenced to the input

〈V1V2〉 = 〈V 2
S 〉 + RS(RS + RL)i21 + RS(RS + RL)i22 (4.2)

= 〈V 2
S 〉 + 2R2

S · i2Amp . (4.3)

for RL << RS . Where i2Amp = i1 = i2 represents the current noise of the amplifier.
Thus, the determination of the sample noise requires only the knowledge of the
spectral density of the current noise of the amplifiers.

4.2.2 Characterization of the noise-measurement setup

As we mentioned in earlier section, there is a RC-damping of the measured sig-
nal because the whole measurement setup behaves like a RC-filter with the total
resistance R and the total capacitance C of all the measurement lines and ampli-
fiers. This attenuation can be calibrated by measuring the equilibrium voltage noise
SV = 4kBRT as a function of temperature T , as shown in Fig. 4.4a. where, kB

is the Boltzmann constance and R is the sample resistance. The calibration has
been checked for different frequencies and sample resistances (Fig.4.4b). However,
it is necessary to know in detail about the characteristics of the measurement setup
to do correct data analysis on the measured data. For characterizing the measure-
ment setup, we introduce an electric circuit model contains a RC-filter based on the
discussions above. In Fig.4.5, simplified model of the measurement setup for the
noise detection is shown. From this model, we can calculate the output voltages,
the transfer function and finally the cross-correlation of two output voltages of the
circuit. The resistance of the bias line is dominated by bias resistance RB and the
capacitance of the bias line is mainly due to the capacitance of thermocoax cable
at low temperature. Therefore only one capacitance CB represent the bias line ca-
pacitances. RL and CL represent the resistance and the capacitance of all the noise
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Figure 4.4: (a) measured data of equilibrium(Thermal) noise versus sample temperature
for the calibration of data. Thermal noise is linearly proportional to the temperature and
the slope of the plot gives the attenuation factor of the signal. It shows ∼ 0.4 for f = 100
kHz with f the center of the frequency window. (b) RC-damping of the signal for different
frequencies and sample resistances. Solid curve presents a theoretical fit from the data and
yields a total capacitance of the measurement setup about 780 pF .

detecting lines including the amplifiers. The noise introduced by RL is negligible
compared to the other noise sources thus, it is not taken into account. The exact
expression of the output voltage V1 and V2 is quite complicated for all the resistance
and the capacitance terms in this model. However, we know from the measurement
that the bias resistance RB and the sample resistance RS are much bigger than the
resistance of the leads RL i.e., RL/RB � 1, RL/RS � 1, thus in the low frequency
limit, the term ωRLCL is negligible. We further simplify that the capacitance of
whole circuit is represented by single total capacitance Ctot = CB +2CL. Neglecting
all the smaller terms, we can get relatively simple expressions for the two out put
voltages V1 and V2

1:

V1 =
RS(iB + i + i1 + i2)

1 + (RS/RB) + jωCtotRS
+ RLi1 + v1 (4.4)

V2 =
RS(iB + i + i1 + i2)

1 + (RS/RB) + jωCtotRS
+ RLi2 + v2 . (4.5)

where iB, i, i1, i2 are four current noise source terms from bias resistance, sample
and two amplifiers respectively. v1 and v2 are two voltage noise sources from the
amplifiers. Here, only the fluctuating part is present and all the D.C. part is ignored.
After the average of the cross correlation of the two output voltages V1 V2, the terms
which do not have a constant phase relationship between them will be eliminated.
Consequently, the contributions of the voltage noise sources of the amplifiers and

1We will show in the appendix A more rigorous expression for V1 and V2 and in the limit case
with the conditions above, it recovers the same expression as Eqn. 4.8
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Figure 4.5: The electric circuit model of the measurement setup. U is the DC-bias source
and from the bias lines, the bias resistance RB is dominant and its’ current noise source
iB , the CB represents the capacitances of the bias lines. RS = dV/dI is the differential
resistance of the sample and it is important to denote as a differential resistance because
of it’s non-linearity. i is the current noise source of the sample which we are interested to
measure. RL and CL are the total resistance and capacitances of the measurement lines
including the amplifiers respectively. i1, i2 and v1, v2 are the current and voltage noise
sources of the amplifires and the measurement lines.

the measurement lines which contains 1/f component are averaged to zero (See
Sec.4.2.1 or Ref. [76] for details and See Fig. 4.7 for a practical example.) and only
terms like 〈x · x〉 remain in the expression. Hence, the cross-correlation 〈V1 · V2〉 is
just:

SV1,V2 = 〈V1 · V2〉 =
R2

‖
1 + (ωCtotR‖)2

(
〈iB · iB〉 + 〈i · i〉 + 〈i1 · i1〉 + 〈i2 · i2〉

)

+
R‖RL

1 − jωCtotR‖

(
〈i2 · i2〉

)
+

R‖RL

1 + jωCtotR‖

(
〈i1 · i1〉

)
(4.6)

=
R2

‖
1 + (ωCtotR‖)2

(
SB + SI + 2

[
1 +

RL

R‖

]
SAmp

)
. (4.7)

here we denote the parallel resistance of RB and RS , i.e., R‖ = RBRS/(RB + RS)
and SB = 〈iB · iB〉, SI = 〈i · i〉, SAmp = 〈i1 · i1〉 = 〈i2 · i2〉. This simplified expression
remains true for the relevant parameters of the contact resistances and the frequency
range for our experimental setup. So, the DC bias dependent power spectrum of
the current fluctuations of the sample can be extracted from the measured cross-
correlation spectrum SV1,V2 as follows:

SI =
1 + (ωCtotR‖)2

R2
‖

SV1,V2 − SB − 2
(
1 +

RL

R‖

)
SAmp (4.8)

Where the prefactor (1 + (ωCtotR‖)2)/R2
‖ indicates the resulting attenuation of the

measured signal from this RC-circuit model and the determination of these factors
is described in Appendix.A. Figure 4.6 shows an example of the measured raw data
of cross-correlation spectrum SV1,V2 for a wide frequency window. Each spectrum
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Figure 4.6: Typical raw cross-
correlation power spectrum of the
voltage fluctuation of the sample.
We tried to measure the noise in
a chosen frequency window which
there are no spikes exist for exam-
ple, between 80 and 90 kHz in this
case.

consist of 401/802 points distributed over the chosen frequency window. We try
to choose the frequency window where there is no spikes or the minimum number
of spikes as possible. Then the measurement program calculates the average noise
power of the averaged spectra excluding the points which are off from the average
by a certain magnitude which can be manually set. There is another method for
obtaining the average noise power which uses the mean value of the Gaussian fit of
the spectrum. This alternative method is less sensitive to the peaks in the spectrum
and allows one to use a large frequency window so that the averaging time is reduced.
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erably.
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Table 4.1: Summary of measured parameters.
Parameter Value
Bias resistance RB 1.037 MΩ
Noise of Bias resistance SB 1 × 10−28A2s
Total capacitance Ctot 780 pF
Measurement line resistance RL ∼ 30Ω
Current noise of the NF-preamplifier SAmp 5 × 10−28A2s
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4.3 Gating of the InAs heterostructures

Motivation

The idea is to separate the spin singlet Cooper pairs of electrons spatially with a Y-
shaped ’beam splitter’ on the normal side. Measurements of the cross-correlations of
the current noise in the two arms, can reveal whether a separation of the Copper pairs
is achieved or not. This is very important in order to demonstrate spin entanglement
of electrons in the vicinity of a normal-superconducting interface which can be our
long-term aim from this device. The ability to tune the device with gates is desirable
for a number of reasons.

• It will be an advantage to be able to tune the electron densities in the two
arms separately, to ensure that orbital energies are the same. Further more, if
the positive correlation in the noise is a mesoscopic effect, as it was suggested
in Ref.[77], then a tuning of the devices is necessary.

• A theoretical suggestion to ensure the spatial separation of the Cooper pair is
to place quantum dots in each arm [27]. Quantum dot engineering needs gates
that can actually deplete the electron gas.

• Measurements of a positive current noise correlation of the two electron beams
cannot prove entanglement. To do this, on would for instance need to tune the
spins in the two beams independently. This might be done using the Rashba
effect, with gates to produce an electric field.
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Figure 4.8: I-V curve of connec-
tion between a Ti/Au topgate, and
a InAs mesa. There is a linear be-
havoir with a resistance of 150 kΩ.

Test of gated device2

The presented samples are made on the InAs wafer without any superconducting
Nb contacts. Gating of InAs heterostructures is made difficult by the fact that InAs

2Note that this test was done before we found out the right parameters for the annealing process
so all the 2DEG behaviors are much resistive than it should be. Refer the sub-section 3.2.1 for the
details.
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Figure 4.9: Left: SEM picture of a 4 µm wide etched opening with metal side gates, Right:
Resistance of a sample similar to the Figure in left, as function of the voltage applied to the
gates. Two sweeps shown. At 2 V fluctuations appear due to a large leak current.

has no native Schottky barrier. This is illustrated by the results of a test experiment
shown in Fig.4.8. A 20µm wide Ti/Au top-gate has been deposited across a 50µm
wide etched-out mesa, with ohmic contacts. The I-V characteristic from the top-
gate to the InAs 2DEG shows a linear dependence, with a resistance of 150 kΩ ,
probably due to leakage from the side-walls of the mesa. To separate the gate from
the 2DEG, we created an in-plane self-aligned side gate. See Fig.4.9. An opening
was wet-etched out in the mesa, and the protective layer of PMMA resist was used
as a lift-off mask for a subsequently deposited Ti/Au top gate. For details of the
fabrication procedure, see in Appendix B. Undercut of the resist, and undercut
by the wet-etch, results in a 100-500 nm separation of the gate from the un-etched
mesa.

Measurements of the gate effect on a similar sample, where the gates are 3µm
apart, are shown in Fig.4.9 The 2-terminal resistance is measured between ohmic
contacts at each end of the 300 µm long and 50 µm wide mesa. If the gate voltage
is increased above +1 V or below -1 V, the leak current from the gates to the 2DEG
starts to increase above the noise level of 50 pA for this measurement. In this gate
voltage window, the resistance of the sample changes with less than 0.5 kΩ.

As a further refinement of the gating technique, we pre-etched parts of the mesa.
This had the effect of separating the gate electrode further from the InAs, and
thus reducing the probability of leak currents. The resulting sample can be seen in
Fig.4.10. Only near the constriction is the gate-InAs lateral separation defined by
the self-alignment technique, here resulting in a separation of 200 nm. In the left
of the Fig.4.11, the effect of the gate voltage on the resistance of the constriction
can be seen. The gate can be biased from -2 V to +2.5 V without any detectable
leak current (Right in Fig.4.11). In this gate voltage interval, the resistance of the
junction changes by less than 0.3 kΩ.

As a further demonstration of the resistive decoupling of the gate and the 2DEG,
we show in Fig.4.12 current-voltage characteristics from the gates to the 2DEG. We
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Figure 4.10: SEM picture of the sample geometry. A constriction is defined in two steps
on a 50 µm wide mesa, see text for the explanation.
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Figure 4.11: Left: Resistance of the sample in Figure 4.10, as function of gate voltage.
Several gate sweeps shows some reproducability. If the applied gate voltage is taken to
higher or smaller values, the resistance start to fluctuate and reproducability is lost. Right:
Leak DC current of the sample in Figure 4.10 (there is an arbitrary offset). The resistance
shown in left figure is measured by applying an AC current.

conclude that there is a resistance of the order of 1/G(Quantum conductance) from
the gates to the 2DEG.

All measurements presented were done at a temperature of 5.2 K, using voltage
biased AC lock-in methods (frequency 27 Hz, RMS bias voltage 0.5 mV) to measure
the resistances.

Conclusion

By separating metallic side-gates 100-200 nm from the InAs heterostructure, we
have achieved very high gate-2DEG resistance, and hence small leak currents, for
gate biases of a few Volt. On the other hand, the gate efficiency has shown to be
very poor. It seems unlikely, that this gating technique can be used to effectively
tune the Y-branch, even though there is still some room for improvement of the
technique (by for instance make the constrictions narrower). Further, if this method
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Figure 4.12: I-V characteristic of
gate-2DEG for one of the gates of
the sample in Figure 4.10. The
other gate shows similar character-
istics. The fluctuations are not re-
producible, and no linear behavior
is seen.

should be used to control tunnel junctions leading to a quantum dot, then one has
to be able to deplete the electron gas. On the basis of the present measurements, it
seems not possible to achieve this.



Chapter 5

Shot noise in
superconductor-semiconductor
heterostructure junction

5.1 Introduction

Shot-noise measurements provide a powerful tool to study charge transport in meso-
scopic systems.[1] Whereas resistance measurements yield information on the average
probability for the transmission of electrons from source to drain, shot-noise provides
additional information on the electron transfer process, which can not be obtained
from resistance measurements. For instance, the charge of the quasi-particles can
be extracted from shot-noise measurements, an experiment that was applied to the
fractional quantum Hall regime.[3, 4, 5] Shot-noise also provides information on the
statistics of the electron transfer. In general, the fermionic nature of the particles
lead to a suppression of the shot-noise from its classical value SI = 2e|I|, correspond-
ing to Poissonian statistics (SI is the power-spectral density of current fluctuations
in units of A2s). Suppression can also be induced by Coulomb interaction, which
was observed in the single-electron tunneling regime.[48] That shot-noise can be fully
suppressed in an open channel was confirmed in quantum-point contacts.[78, 79] In a
general conductor, the suppression is not full, but depends on the actual distribution
of transmission eigenvalues.[57, 80, 81] For example, shot-noise is suppressed to 1/3
in a disorder wire [9, 10, 11, 12, 13, 14] and to 1/4 in an open cavity.[15, 82, 16, 17]
For a recent review, see Ref. [83].

Different to mesoscopic devices with normal electron reservoirs, shot-noise can be
enhanced in devices with superconducting leads by virtue of the Andreev reflection
process taking place at the interface between a normal metal and a superconductor.[84,
18, 71, 85, 6, 86, 87] In some limiting cases, e.g. in the tunnelling and disordered
limit, the shot-noise can be doubled with respect to its normal state value.[57, 51,
88, 19, 20, 21]

In addition to measure shot-noise in a two-terminal geometry, multi-terminal
fluctuation measurements have been proposed.[22] Whereas shot-noise corresponds

51
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to the autocorrelation of fluctuations, cross-correlation measurements of fluctua-
tions between different leads provide a wealth of new experiments. As pointed out
by Büttiker, exchange-correlations can for example be measured directly.[22] In an
attempt to go beyond conventional shot-noise measurements, correlation measure-
ments [14, 23] on electron beam-splitters [24] were studied. The partitioning of
a ‘stream’ of ferminons in a beam-splitter results in negative correlations between
the fluctuations measured on the two output ports (anti-bunching). In contrast,
bunching-like behavior (positive correlation) has theoretically been predicted in mul-
titerminal devices in which at least one electrode is a superconductor.[59, 61, 40, 62]
In the subgap region, charge is injected from the superconducting lead into the de-
vice in correlated pairs of electrons, which - in the simplest picture - may separate in
the normal scattering region and exit at two different leads. As a consequence, the
current in the exit leads fluctuate in parallel. However, it has been pointed out, that
this picture is misleading, in particular in the regime where the superconductor is
strongly coupled to the normal region. In this case, the normal region should rather
be viewed as a proximity-induced superconductor.[89] Positive correlations have not
been observed in mesoscopic devices until today.

Finally, we mention that the experimental quest for positive correlations is also
important for the new field of quantum computation and communication in the
solid state, [31, 32] in which entangled electrons play a crucial role. A natural
source of entanglement is found in superconductors in which electrons are paired
in a spin-singlet state. A source of entangled electrons may therefore be based on
a superconducting injector.[33, 34, 27, 35, 36, 37, 38, 39, 40, 41] Even more so, an
electronic beam-splitter is capable of distinguishing entangled electrons from single
electrons.[29, 42]

We have therefore focused our experimental research on the fabrication of super-
conducting injectors (Nb) into a high-mobility InAs-based two-dimensional electron
gas (2DEG),[90, 91, 92, 93] in which beam-splitters can be fabricated. In this arti-
cle, we focus on the fabrication of such devices in Sec. 5.2 and their characterization
in terms of linear and non-linear resistance in Sec. 5.3.1, as well as shot-noise in
Sec. 5.3.2. Near the superconductor-2DEG interface two etched sub-micrometer
constrictions define a beam-splitter which divides the input current. We study the
shot-noise of the current from the superconductor to one of the normal reservoirs
and observe an enhancement for bias currents corresponding to voltages below the
superconducting gap of the Nb contact. This enhancement is due to Andreev re-
flections at the superconducting contact and disappears in a magnetic field higher
than the critical field of Nb. Using the coherent scattering theory, we extensively
compare our measurements with different models in Sec. 5.4. Our devices can best
be described as composed of a highly transparent S-N interface in series with a short
scattering region, whose size L is comparable to the elastic mean-free path le. It
may therefore be named a quasi-ballistic S-N beam-splitter junction.
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5.2 Experiment

The InAlAs/InGaAs heterostructure was grown by molecular beam epitaxy on a
Fe-doped semi-insulating InP substrate. The 2DEG is confined in a 4 nm wide
InAs quantum well 35 nm below the surface of the heterostructure, see Ref. [90] and
Fig. 5.1a for details. The substrate is first structured into a 50µm wide Hall bar
(MESA) by wet etching. Hall and Shubnikov-de Haas measurements (Fig. 5.1b) then
yield an electron density of ne = 2.1 · 1016 m−2 and a mobility of µ = 5.0 m2/Vs for
the 2DEG, corresponding to a Fermi wavelength of λF = 18 nm and an elastic mean
free path of le = 1.2 µm.

The Nb electrode is defined by electron beam lithography at one side of the
MESA. First, the MESA is etched in the patterned electrode area to a depth of
∼ 50 nm. Then, the sample is mounted in an evaporation chamber and rf-sputter
cleaned. Without breaking the vacuum, a 80 nm thick Nb film is subsequently de-
posited at an angle of 30 degrees to the horizontal. After lift-off, a 50µm wide
superconductor-2DEG contact is obtained. A cross-section through such a Nb con-
tact is schematically shown in Fig. 1a.

E-beam lithography is now used to reduce the macroscopic superconductor-
2DEG contact to sub-micron dimensions, see Fig. 5.1c. This is achieved by etching
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Figure 5.1: (a) Schematic side view of the Nb contact to the InAs semiconductor hete-
rostructure and the corresponding energy band diagram. (b) Longitudinal (Rxx) and Hall
(RH) resistance measured on this heterostructure. (c) SEM picture of a sample (top view)
with a diagram of the measurement setup. The sample is current biased through a series
resistor and the voltage fluctuations are measured with the aid of two sets of amplifiers
whose outputs are cross-correlated. S denotes the power spectral density in units of V2/Hz.
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trenches into the heterostructure to a depth of 60 nm below the surface, removing
the conducting InAs quantum well. Three trenches are etched, two vertical ones
and one horizontal one, which start at the nanometer-sized contact in front of the
superconductor and extend across the whole MESA. The vertical trenches have a
width of about ∼ 100 nm and are placed parallel and as close as possible to the
Nb interface at a distance of less than 50 nm. The three-terminal junction consist
thereafter of a 300 × 350 nm square area in the 2DEG which is bound on one side
(350 nm wide) by the edge of the superconductor and the other side by two con-
strictions leading to two macroscopic normal electron reservoirs. The constrictions
have a nominal width w of 170 nm, corresponding to N = 2w/λF ≈ 19 conducting
channels. This part can be viewed as a beam-splitter for charge carriers (Cooper
pairs in the superconducting state), injected from the Nb contact.

The sample is mounted in a 3He cryostat with a base temperature of 270 mK.
Here, we restrict ourselves to two-terminal measurements as schematically shown in
Fig. 5.1c. The sample is current biased through a 1 MΩ series resistor thermally
anchored at the 1 K pot of the cryostat. The current is determined by the DC bias
voltage U , on which a small AC voltage is superimposed in order to measure the
differential resistance dV/dI. All measurement lines are filtered at low temperature
by lossy microcoax cables and additional π-filters are used at room temperature.
Two ultra-low noise amplifiers (LI-75, NF corporation) with a fixed gain of 100,
followed by two low-noise amplifiers (Stanford SR560, operated at a nominal gain of
10 or 100), are used to measure the voltage fluctuations across the sample in parallel.
All amplifiers are operated at room temperature and powered by independent sets
of batteries to minimize cross-talk. The voltage signals from the amplifiers are
then cross-correlated by a spectrum analyzer (HP 89410A). This cross-correlation
technique [76] can eliminate (or greatly reduce) the voltage noise contributions due
to the two amplifiers, because they ought to fluctuate in an uncorrelated manner.

In order to measure shot-noise, which is a frequency independent contribution,
one has to ensure that 1/f -noise can be neglected at the highest bias currents. As
a consequence, we have measured the noise at rather large frequencies f around
50 − 200 kHz. In this window, 1/f noise can be neglected up to the highest currents
of ≈ 2 µA. Due to capacitances in the whole circuit including the measurement
lines, the signal is damped. The overall gain, including the frequency-dependent
attenuation, has to be carefully calibrated for each device separately. This is done
by measuring the equilibrium voltage noise (i.e. the thermal noise), given by SV =
4kBTR, as a function of temperature T , as shown in Fig. 5.2a. Here, kB is the
Boltzmann constant and R is the linear-response sample resistance (more precisely,
the parallel connection of the sample resistance with the series biasing resistor). The
measured voltage noise SV1,V2 , including the amplifier noise, can be written as (see
Fig. 1c):

SV1,V2 = A(ω)R2(SI + SI,off) + SV,off (5.1)
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Figure 5.2: (a) Example of a measurement of the equilibrium (thermal) voltage noise
(spectral density SV ) versus temperature T used to deduce the calibration parameters.
Here, the frequency and sample resistance were f = 110 kHz and R � 2 kΩ, respectively.
The thermal noise is linearly dependent on T and the slope. For the calibration an average
value for R was used. yields the attenuation factor A of the signal. (b) The attenuation A
as a function of ωR follows the dependence expected for a simple RC network, i.e. A(ω) =
(1 + (ωRC)2)−1.

Here, SI is the current noise of the sample, which in the calibration procedure
is of thermal origin only, i.e. SI = 4kBT/R. SI,off denotes the current noise offset
of the two LI-75 amplifiers. This contribution cannot be eliminated by the cross-
correlation scheme. We also find a non-zero voltage noise offset SV,off accounting for
residual cross-talk between the amplifiers, possibly due to spurious ground currents.
The nominal overall gain of either 103 or 104 of the amplifiers has been divided
off in the above Eq. 5.1. Hence, all the quantities refer to ‘input’ noise. Finally,
A(ω = 2πf) denotes the frequency-dependent attenuation factor.

A typical calibration measurement at f = 110 kHz is shown in Fig. 5.2a. The
attenuation A at this frequency is obtained from the slope of SV (T ) and the residual
amplifier noise from the vertical offset of the fitted linear dependence extrapolated
to T = 0.1 The attenuation was measured for different devices with varying resis-
tances R, ranging between ≈ 1.5 and ≈ 2.5 kΩ and frequencies in the range of 50
to ≈ 200 kHz. A(ω) for a set of devices is shown in Fig. 2b to follow the expected
damping for a simple RC network, i.e. A(ω) = (1 + (ωRC)2)−1. The extracted ca-
pacitance of C = 840 pF is mainly due to the filtering of the wires (microcoax-filters)
and the two input capacitances of the amplifiers.

The noise offset Soff , extracted from the calibration procedure, typically amounts
to 1 · 10−19 V2s. The current noise of a single LI-75 amplifier is specified to be
< 2 · 10−28 A2s and independently measured to be < 8 · 10−28 A2s, corresponding

1The linear dependence of SV (T )−SV,off with temperature T which we used in the calibration is
not exact, because R is not constant but temperature dependent as well. R varies in the temperature
range by ± ≈ 10. For the calibration, average value for R was used.
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to a voltage noise of < 3.2 · 10−21 V2s for a single amplifier on a typical sample re-
sistor of R = 2 kΩ, or to < 6.4 · 10−21 V2s for two amplifiers in parallel. The offset
current noise of the amplifiers is therefore at least an order of magnitude smaller
than the measured offset and can therefore not account for it. Hence, the domi-
nating part of the measured offset is caused by residual voltage fluctuations. The
voltage noise floor of a single LI-75 amplifiers is specified to be 1.4 · 10−18 V2s and
independently measured (short circuit input) to be 2.5 · 10−18 V2s, a value which is
substantially larger than the measured offset noise after the cross-correlation. The
cross-correlation technique therefore reduces the voltage fluctuations of the ampli-
fiers by as much as a factor of 25.

The deduced calibration parameters are then used to extract the intrinsic cur-
rent shot-noise SI generated in a superconducting-2DEG junction from the measured
noise SV1,V2 using Eq. 5.1. It is important to emphasize, that R in Eq. 5.1 has to
be replaced by the differential resistance dV/dI for the non-equilibrium measure-
ment. This is crucial, because of the non-linear current-voltage characteristic of
these devices.

5.3 Results

We measured the linear-response resistance R as a function of temperature T , the
differential resistance dV/dI and the spectral density of the voltage fluctuations (the
noise) as a function of bias current I, both at T = 270 mK. We focus first on the
resistance and then on the noise measurements.

5.3.1 Resistance measurements

Fig. 5.3 shows the temperature dependence of the linear-response resistance R mea-
sured from the superconductor to one of the normal reservoirs, as schematically
shown in Fig. 5.1c. Above T = 7.5K, the resistance is constant, whereas it varies
non-monotonically below. R first drops abruptly below 7.5 K, has a minimum at
≈ 6 K and then starts to increase for lower temperatures. At the lowest tempera-
ture, R is ≈ 8 % higher than R(T > 7.5 K). The drop at 7.5 K is identified with the
superconducting transition temperature Tc of the junction. The superconducting
transition of the Nb film was also measured via two contacts bonded to the Nb elec-
trode of the actual device. We found Tc = 8.5 K (inset of Fig. 5.3). A suppression
of Tc in a film from its bulk value of 9.5K is commonly observed, as is a similar
suppression of Tc in micro-fabricated structures. The relative modest suppression of
≈ 1 K is in agreement with previous work, see for example Ref. [71].

The non-monotonic temperature dependence, which we observe in Fig. 5.3, sug-
gests that the superconductor-2DEG interface has an intermediate transparency.
This is qualitatively deduced by referring to the BTK model of a superconductor-
normal metal junction.[52] In this model scattering is exclusively taking place at



5.3 Results 57

R 
(K
Ω

)
0 2 4 6 8 10

1.8

2.0

2.2

2.4

T (K)

8.5 9.0 9.5 10.0

R
 (k

Ω
)

0.4

0.3

0.2

0.1

0.0 T (K)

Figure 5.3: Temperature dependent resistance R(T ). Circles correspond to the measure-
ments, whereas the curves are calculated using the BTK model together with a classical
series resistor RS = 0 (solid), RS = 500 (dashed), and RS = 1000 Ω (dotted). ∆ was fixed
to 1.14 meV and the barrier transparency Γ was fitted, yielding Γ ≈ 0.72. The inset shows
the superconducting transition of the Nb film measured with two probes on a structured
device. The transitions of the Nb film and the sub-micron Nb contact are marked by arrows.

the junction interface described by a single parameter, which is the transmission
probability (transparency) of the junction. This situation is referred to as the clean
or ballistic junction limit (also the BTK limit), as opposed to the case in which
additional scattering in the normal part of the junction is introduced. If the junc-
tion has a low transparency (tunnel junction), the resistance is expected to increase
exponentially fast at low temperature. On the other hand, if the junction has a very
high transparency, R decreases monotonically to reach half of its normal state value
at the lowest temperature. We neither see an exponential increase, nor a monotonic
decrease of R, suggesting intermediate transparency.

In the following, if we refer to the normal state resistance RN , we mean R(∼
8 K), and if we refer to the resistance in the superconducting state RS , we mean
R(270 mK).

The measured normal-state resistance RN of this device equals 2.13 kΩ. It is
straightforward to compare the corresponding normal-state conductance GN = R−1

N

with the Landauer formula,[94] i.e. with GN = (2e2/h)NΓ, where N is the number
of eigenchannels with non-zero transmission eigenvalues Tn and Γ the mean value
of Tn. Taking N to be 19, as determined from the width of the constrictions, yields
Γ ≈ 0.32 as the average transmission coefficient of the entire device. The resistance
can have contributions from both the superconductor-2DEG interface and the point
contacts to the normal reservoirs. Therefore, Γ ≈ 0.32 must be seen as a lower
bound for the S-N interface transparency. This will be studied in greater detail in
section 5.4.

In Fig. 5.3 are also shown calculated curves of R(T ). The solid curve corresponds
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Figure 5.4: Voltage dependent differential resistance dV/dI(V ) measured at T = 270 mK.
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arrows point to the gap value ∆ estimated from the transition temperature Tc using the
standard BCS relation ∆ = 1.76kBTc, whereas the open arrows point to ∆ = 1.9kBTc,
where the factor 1.9 is known for bulk Nb.

to the BTK model for a junction transparency of 72 %. The minimum of R(T )
is much more pronounced in the calculated curve. In an attempt to account for
additional scattering, for example at the constrictions of the beam-splitter, a classical
series resistor was added (dashed and dotted curves). This clearly improves the
overall matching, but strong deviations remain close to Tc.

We mention that similar resistance values and temperature dependencies were
measured for several other samples.

We also measured the differential resistance dV/dI, which is shown as a function
of voltage V in Fig. 5.4. What actually was measured is dV/dI as a function of
bias current I. This data was converted to the displayed voltage dependence by
integration. Similar to the temperature dependence, dV/dI has a non-monotonic
dependence. It first drops for increasing voltage and shows a minimum (a dip)
before increasing again at higher voltages. The dip occurs close to the gap value
∆ of the superconductor. ∆ is estimated from the apparent transition temperature
Tc = 7.5 K of the junction using the zero-temperature BCS relation ∆ = 1.76kBTc,
yielding ∆ = 1.14 meV (black arrows). The agreement is even better if we use instead
of the BCS factor of 1.76 for the ratio ∆/kBTc the factor 1.9, which is the reported
ratio for bulk Nb. This yields ∆ = 1.23 meV (open arrows). Similar to R(T ), we
used the BTK model to calculate the differential resistance, which is shown as a
solid curve. The dashed and dotted curves correspond as before to the BTK model
including a classical resistor in series. The theoretical curves display very pronounced
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Figure 5.5: Power spectral density SI of the current noise of a sub-micrometer S-N junction
as a function of applied current I. SI is extracted from the measured voltage noise SV1,V2

between the superconductor and one of the normal reservoirs (see Fig. 1c) according to the
Eq. 5.1. A clear crossover from a large Fano factor FS at small bias currents to a reduced
Fano factor FN for large currents is observed. This crossover coincides with gap ∆ of the
superconductor (open arrows).

dips at ±∆, which are apparently strongly damped in the measurements. Unlike in
the temperature dependent case, i.e. R(T ), the series-resistor model improves the
agreement only marginally. In particular the strong dips are not removed.

5.3.2 Shot-noise measurements

We measured the shot-noise from the superconductor to one of the normal reservoirs
of the sub-micrometer beam-splitter as schematically shown in Fig. 5.1c. The mea-
surement yields SV1V2 = SV as a function of bias current I. To obtain the intrinsic
current noise SI(I) of the junction, Eq. 5.1 is applied using the calibration parame-
ters as we have described it in the experimental part of Sec. 5.2. The result is shown
in Fig. 5.5. It corresponds to the same sample, for which R(T ) and dV/dI(V ) have
been shown in Fig. 5.3 and Fig. 5.4, respectively.

The full temperature and voltage dependence of the power-spectral density SI

of the current fluctuations can only be expressed in a simple analytical form for a
junction with a constant channel transmission coefficient T . It is given by [22]

SI =
4(1 − F )kBT

R
+ F · 2eIcoth

(
eV

2kBT

)
(5.2)

where F is known as the Fano factor and equals 1 − T .
Noise measurements are generally analyzed in two limiting cases: (a) for small

applied voltages eV << kBT , for which SI equals the Johnson-Nyquist equilibrium
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noise (the thermal noise) 4kBT/R, and (b) for large applied voltages eV >> kBT ,
for which a linear dependence of SI(I) is expected. In the limit of shot-noise, i.e.
the latter case, SI = F · 2eI and it is the Fano factor F , which is the central
parameter that is deduced from such measurements.[48, 79, 1] F = 1 for a junction
in which all channels have low transmission eigenvalues, i.e. in tunnel junctions.[48]
In electronic devices in which charge is transported by single electrons alone, the
Fano factor can in general be written as F =

∑
nTn(1 − Tn)/

∑
Tn, which is always

smaller or at most equal to one. Hence, the suppression of shot-noise in mesoscopic
devices has been a central focus of research during recent years. For a review we refer
to Ref. [1] and Ref. [83]. In contrast to ‘normal’ conducting devices, enhancement
of shot-noise has recently been found in superconducting devices, in S-I-S [18] and
S-N junctions,[19, 21] as well as in superconducting S-N-S links.[71, 87] The two
extreme cases of S-N junctions are the tunnel junction and the ballistic junction. In
the former, the noise in the superconducting state is doubled (FS = 2) as compared
to the normal state (FN = 1).[18, 21] In the latter, shot-noise disappears completely,
i.e. FS = FN = 0.

The doubling of the shot-noise in the superconducting state may be interpreted as
being caused by the effective charge e� of the charge carriers,[57, 51, 88, 84, 21] which
are Cooper pairs with e� = 2e, provided the temperature and the applied voltage are
sufficiently small. One has to emphasize, that the doubling of the shot-noise is not
generic.[34] For a single channel S-N junction with transparency T , the ratio of the
Fano factors in the superconducting and normal state equals FS/FN = 8/(2 − T )2,
which - as mentioned before - can reach at most 2. If there are many channels
with a distribution of eigenvalues Tn, the situation is different. For example, there
is a doubling from FN = 1/3 to FS = 2/3 in the diffusive case,[95, 19, 20] but
FN = 1/4 [15, 16] increases to FS = 0.604 in case of an open chaotic cavity with a
superconducting and normal terminal. The ratio in this case is even larger than 2,
i.e. FS/FN = 2.4.

The measured shot-noise in Fig. 5 clearly displays two regimes in which SI(I) is
nearly linear. In the low-current (low-voltage) regime, the slope is larger than in the
high-current (high-voltage) regime. The crossover on the positive (I > 0) and neg-
ative (I < 0) side of the curve occurs at ≈ 0.62 µA and ≈ −0.78µA, corresponding
to a voltage of ≈ 1.3 mV and ≈ −1.5 mV, in reasonable agreement with the value of
the superconducting gap parameter ∆/e = 1.23 mV (open arrows), which we have
deduced before. The agreement is good on the positive side, but somewhat off on the
negative side, where the crossover appears to be shifted to a larger value. Asymme-
tries in the crossover as well as in the Fano factors were seen in other samples too.
The low and high-bias slopes are identified with FS (low-currents) and FN (high
currents). We deduce FS = 0.58 ± 0.10 and FN = 0.25 ± 0.04 (average of slopes
for I < 0 and I > 0). We note that the values of the Fano factors are considerably
suppressed as compared to the case of a weakly transparent S-N junction.

In contrast to conductivity measurements, from which the average transmission
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Figure 5.6: Fano factors versus perpendicular magnetic field B (symbols). The dashed
curves are guides to the eyes. As B is increased, the enhancement of the Fano factor
in the superconducting relative to the normal state (i.e. the ratio FS/FN ) diminishes and
fully disappears for B � 3 T. Note, that FN also slightly decreases as the field increases.
Inset: The power spectral density SI of the current noise as a function of the bias current
I for B = 0, 1, 2, and 4 T. The curves are shifted vertically for clarity. The crossover
(arrows) between the superconducting and normal state shifts to lower voltages for increasing
magnetic field as expected.

probability can be deduced, measurements of the shot-noise provide insight into the
actual distribution of the transmission eigenvalues, which helps to find the correct
description of the scattering problem of the actual device. By making use of all
measured parameters, the resistance in the normal and superconducting state, as
well as FS and FN , different models will be compared in detail in the last section.

Finally, shot-noise measurements were also performed in a perpendicular mag-
netic field B, see Fig. 5.6. It is seen that the separation in two regimes, characterized
by distinct Fano factors, disappears around B = 3 T, corresponding to the critical
field of the Nb contact, which was measured independently. Fig. 5.6 also shows that
not only the Fano factor FS in the superconducting state is suppressed, a decrease,
though a smaller one, is also observed in the normal state for FN . The origin is
likely due to magnetic-field induced suppression of backscattering in the semicon-
ductor nanostructure, a well known phenomenon in mesoscopic physics.[64] This
observation proves that scattering is taking place within the beam-splitter in zero
magnetic field adding up with the finite transparency of the superconductor-2DEG
interface to the whole scattering problem. If we assume that ideally transmitting
edge states have formed at the highest field, the superconductor-2DEG interface
would have to account for the remaining Fano factor of FN = 0.16 alone, yielding a
transparency of as much as T = 1 − FN = 0.84 in a single channel model. From ref-
erence transport measurements on Hall-bars we know that the longitudinal resistance
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Figure 5.7: Illustration of the two basic models which we have used to analyze our data.
(a) is based on a wire and (b) on a cavity. The models are considered in different regimes,
but always in the limit of zero temperature. In (a) we distinguish between the ballistic
(le � L), intermediate (le ∼ L), and diffusive (le � L) regime, whereas in (b) the cavity
is assumed to be either open on both sides (no barrier) or only open on one side with a
tunnelling barrier on the other side, described by its transparency Γ.

of the 2DEG displays pronounced magnetic-field induced oscillations (Shubnikov-de
Haas oscillations) for B � 3 T. Though the resistance minima do not yet reach zero,
clear quantum Hall plateaus are discernible, see Fig. 5.1b. At 4 T, for example, the
Hall measurements show that 10 Landau levels are occupied. Hence, the number of
edge channels is already smaller than the number of transporting channels in zero
magnetic field, which was estimated from the width of the constrictions to be 19.
Since, transport follows the edges in the quantum Hall regime, the 84 % transmission
at the S-N interface must be seen as an upper bound for the respective transmission
probability in zero magnetic field.

In order to understand both the resistance and the shot-noise data, we need to
thoroughly compare our data with a model consisting of a S-N contact with finite
transparency to which an additional scattering region is added.

5.4 Discussion and Modelling

We compare the data of one device with a set of models. These models are schemat-
ically shown in Fig. 5.7. Fig. 5.7a is the wire model with a fixed number of channels
N . Ideal contacts are assumed for the superconductor on the left and normal metal
on the right side. The barrier, which may form in the processing of the Nb contact
to the InAs 2DEG is captured by a tunnelling barrier with transparency Γ. A disor-
dered region, parameterized by its length L and elastic scattering mean-free path le,
can be included. Fig. 5.7b is the cavity model. Here, both sides can have different
numbers of channels. This is in fact closer to the real device geometry where the
contact on the Nb side is wider than the constrictions at the Y-branch. The contact
on the right is always assumed to be ‘open’, meaning that its conductance is equal
to NG0, where G0 = 2e2/h is the quantum conductance, whereas there may be a
tunnelling barrier in the left contact in order to model the effective transparency of
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the N-S contact. In the following when we refer to ‘the normal state’ we consider the
N-N case in which the superconductor is in the normal state. Similarly, when we re-
fer to ‘the superconducting state’ we consider the S-N case. Note, that in contrast to
the real device all the models have two terminals only. This simplification is likely to
introduce deviations, because the open third terminal will add dephasing. However,
neglecting dephasing (relaxation in general) facilitates the comparison with theory
greatly. Now, we can use the machinery of mesoscopic physics to calculate the con-
ductances and shot-noise Fano factors in the normal and superconducting state. It
is one of the great hallmarks of mesoscopic physics that these quantities can be
calculated in the coherent transport regime if the distribution ρ(T ) of transmission
eigenvalues T for the particular device is known.

At zero temperature T = 0 the respective equations for the conductances G(N,S)

and shot-noise powers S(N,S) in the normal (N) and superconducting (S) state
are:[49]

GN = G0N

∫ 1

0
dT ρ(T )T (5.3)

GS = G0N

∫ 1

0
dT ρ(T )

2T 2

(2 − T )2
(5.4)

SN = S0N

∫ 1

0
dT ρ(T )T (1 − T ) (5.5)

SS = S0N

∫ 1

0
dT ρ(T )

16T 2(1 − T )
(2 − T )4

(5.6)

where S0 = 2eV G0 and N is the total number of conducting channels in the sys-
tem. Even more so, general concepts have been developed allowing to calculate the
distribution function ρ(T ) for all models shown in Fig. 5.7.[96]

The result of this comparison is summarized in table 5.1. In the following we will
go sequentially through the models and discuss the assumptions and results. We fo-
cus on the quantities G(N,S) and F(N,S) at zero temperature. In case of the simplest
models we will also compare with the full temperature dependence of the conduc-
tance G(T ) and the voltage dependence of the differential conductance dI/dV (V ).
The parameters GS and GN are deduced in the experiment from the linear-response
conductance measured at the smallest temperature 270 mK and at ∼ 8 K, respec-
tively.

The simplest possible model to compare with is a S-N junction in which the
normal part is ballistic. This problem was first considered by Blonder, Tinkham
and Klapwijk and is known as the BTK model.[52] In the BTK model of a S-
N interface, the junction is characterized by a single transmission coefficient, i.e.
ρ(T ) = δ(T − Γ). For Γ = 1, the junction resistance decreases with decreasing
temperature and the conductance is doubled at T = 0 K due to Andreev reflection.
In the opposite limit Γ � 1, Andreev reflection is suppressed and the resistance
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increases monotonically with decreasing temperature below Tc. The comparison of
the equations for GN and GS with the experimental values yields Γ = 0.73 and
N ≈ 9. We can now use these two parameters to calculate the full temperature
and the non-linear voltage dependence of the conductance and compare both with
the measurements. This is shown in Fig. 5.3 and 5.4 where the calculated curves
are the solid ones. Fig. 5.3 shows the temperature dependence of the linear two-
terminal resistance R(T ) and Fig. 5.4 the differential resistance dV/dI as a function
of voltage V , measured at T = 270 mK. As imposed by this procedure the measured
(circles) and calculated (solid) curves in Fig. 5.3 match at zero temperature and at
(or above) Tc in the normal state. Similarly, the measured (circles) and calculated
(dashed) curves in Fig. 5.4 match at zero bias and approximately at the largest bias
voltage of |V | = 4 mV at which one closely approaches the normal state. In the
intermediate temperature and voltage regime substantial deviations are found. The
theory predicts a much larger conductance increase in the intermediate regime than
is seen in the experiment. This is particularly striking in the differential resistance
where a strong dip (or a peak in the conductance) is expected to occur near the
superconducting gap ∆.

The experimentally observed strong damping of this conductance peak near the
superconducting gap has also been seen in other work.[91, 97] It can be caused by
pair-breaking due to inelastic scattering. Even more so, the shape of the quasi-
particle density-of-state in the vicinity of ±∆, which acquires singularities in the
BCS model, may strongly be damped at the interface between the Nb and the
2DEG.[91] The reason for the latter may be a disordered interface caused by sputter
cleaning or by partial oxidation. For the former, we suspect that the second terminal
of the Y-branch, which has been left open, is a source of dephasing. Electrons at
the Y-branch can scatter into the drain contact, but may also be scattered into the
third terminal, from which they are reflected back but with unknown phase. In
addition, the large deviations in the intermediate regime may also stem from the
assumed model, which is likely to be too simple. We will come back to this issue
when we refine the model. Let us now see wether the ballistic BTK model can
capture the shot-noise results, i.e. the measured Fano factors. In case of an N-N
barrier, the Fano factor is given by FN = 1 − Γ. The estimated Γ = 0.73 predicts
FN = 0.27, which is consistent with the measured shot-noise Fano factor of 0.25.
In the superconducting state, however, the theory for a S-N barrier [49] predicts
FS = 8(1 − Γ)/(2 − Γ)2 = 1.34, whereas the measured Fano factor is substantially
smaller and amounts to 0.58 only. We may also do the reverse and deduce the
transparency Γ from the measured Fano factors instead. FS = 0.58 then implies
Γ = 0.91 which is both inconsistent with the measured Fano factor in the normal
state FN and with the temperature dependence of the resistance in Fig. 5.3. Hence,
the ballistic junction model does not yield consistent values. This is not surprising,
because of the structured beam-splitter in front of the superconductor. Each arm
of the splitter is comprised of a relatively narrow opening. Hence, parts of the
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Table 5.1: Comparison of the measured data, i.e. the linear conductance G(N,S) and the
shot-noise Fano factors F(N,S) in the normal (N) and superconducting (S) state with various
models. Schematics for the models are shown in Fig. 5.7a and b.

GN/G0 GS/G0 FN FS Γ N

Measured 6.1 5.5 0.25 0.58
Ballistic 6.1 5.5 0.27 1.34 0.73 9L � le Ballistic + RS 6.1 5.5 0.16 0.80 0.72 11

L � le Diffusive 5.8 5.8 0.33 0.67 1 19
Open Cavity 5.4 6.4 0.25 0.60 1 11

L ∼ le Quasi-ballistic 6.1 5.5 0.36 0.77 0.55 17
Cavity + barrier 6.1 5.6 0.33 0.84 0.7 11

eigenchannels emanating from the Nb-2DEG interface must be back reflected at
these exit ports. This results in an additional voltage drop, i.e. in an additional
resistance. Since the sample is likely to be coherent this resistance cannot simply be
treated as a classical series resistor. The whole structure composed of S-N interface,
cavity and exit leads need to be treated as one scattering problem. We will discuss
this latter on, but still try the classical series resistor model as an additional test
case next.

Fits to the measured two-terminal resistance R(T ) and dV/dI(V ) including a
classical resistor RS in series to the S-N interface are shown in Fig. 5.3 and Fig. 5.4
for two values of RS , i.e. RS = 500 and RS = 1000 Ω. It turns out that if RS is in-
creased, the fit of R(T ) improves in the intermediate temperature regime. However,
the width of the zero-bias peak in dV/dI broadens with increasing RS , so that the
agreement gets worse here. A reasonable compromise is found for RS = 500 Ω. Us-
ing the conductance measurements we deduce a junction transparency of Γ = 0.72
and obtain for the number of channels N ≈ 11 within this model. Because the
series resistor is a classical one it does not contribute to non-equilibrium shot-noise.
In order to deduce the Fano factor the current fluctuations SI have to be plotted
versus current I. SI is obtained from the measured voltage fluctuations by dividing
SV with the total resistance R = RSN +RS squared. In the framework of this model
this division is incorrect. Instead, one should divide by R2

SN , only. This now yields a
correction factor amounting to (1+RS/RSN )2, which has to be applied to the mea-
sured data. For ease of comparison, we apply the inverse 1/(1+RS/RSN )2 ≈ 0.60 to
the model calculation. As a result, the predicted Fano factor in the superconducting
state FS = 0.80 is getting closer to the measured value, but FN = 0.16 is now clearly
too small as compared with the measured value. Adding a classical series resistance
improves somewhat the agreement between the experiment and model of R(T ). It
also relaxes slightly the large discrepancy of the Fano factor in the superconducting
state. However, it is clear that this model is an oversimplification, because the de-
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vice is more than just one junction with a single transparency and the whole device,
including the cavity and beam-splitter should be treated on equal footing.

A fixed transparency is a very idealized assumption, one which never holds true
in a practical multi-channel device. There are many reasons why a distribution of
transparencies has to be considered: the junction interface is never perfectly homo-
geneous, the sample has been structured and the boundaries may be rough on the
scale of the Fermi wavelength and there are dopants within the heterostructure. It
is possible that the quality of the 2DEG was degraded near the S-N interface during
the sample processing, for example, due to the Ar sputtering of the MESA prior to
Nb deposition.[91] In addition, the narrow constrictions defining the output ports
must be seen as a scattering center. If we assume that disorder is substantial, we are
led to the diffusive regime, which is another limiting case contrasting with the bal-
listic junction limit discussed before. For a diffusive conductor, the distribution of
transmission eigenvalues ρ(T ) is given by a universal result 1/(2sT

√
1 − T ), where

s = L/le.[9] Using this distribution function yields GS/GN = 1,[56] FN = 1/3,[9]
and FS = 2/3.[51] As can be seen from the table, the agreement is much better,
in particular for the Fano factors, suggesting that elastic scattering must be con-
sidered. However, the measured conductances are not equal in the normal and
superconducting state, i.e. GS/GN = 1, as predicated by this model. Though the
agreement is much better, this model is an oversimplification too. We know that
the scattering-mean-free path in the bulk of the 2DEG is much larger than the size
of the nanostructure which is considered here. In addition, the magnetic-field de-
pendence of the Fano factor FN in the normal state (Fig. 5.6) is inconsistent with
a diffusive conductor. One should therefore rather view the device as a cavity with
three terminals: a wide Nb one, and two narrow leads defined by the constriction.
This justifies to compare our data also to an open chaotic cavity.

We only compare our data in table 5.1 with the symmetric cavity, because this
is suggested by the measured Fano factor in the normal state, which is found to
be close to FN = 0.25. A suppression factor of 1/4 is the expected result for the
symmetric open cavity.[15, 83, 16] The distribution of transmission eigenvalues ρ(T )
for a chaotic cavity, contacted by two open leads each having N ideally transmitting
channels, is given by another bimodal distribution function 1/π

√
T (1 − T ).[15, 49]

Using Eq. 5.3-5.6 yields: GN/G0 = N/2, GS/G0 = (2 −
√

2)N , FN = 0.25, and
FS = 0.6036. As can be seen from table 5.1, the measured Fano factors compare
very well with this model. On the other hand, this model predicts GS > GN , whereas
GS < GN in the experiment. We mention that GS > GN also holds if the cavity
is allowed to be asymmetric. In fact, GS/GN is minimal for the symmetric cavity
and reaches the well known factor of two for strong asymmetries. This shows that
we cannot cure the deficiency in the conductances between theory and model just
by tuning the asymmetry alone. In an attempt to lower GS as compared to GN we
now further try to refine our model. There are two refinements we can consider: We
may start from the ‘universial’ diffusive case and ask the question what happens if
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the elastic scattering mean-free path le is increased up to the point when le becomes
of the order of the device size (i.e. cavity size). Secondly, we may add additional
scattering by adding a barrier to one side of the open cavity.

We first consider the ‘quasi-ballistic’ case studied by De Jong and Beenakker. [51,
49] In their model of a S-N device, a tunnel barrier is inserted (which may be used to
model the quality of the contact itself) in series to a disordered region of length L in
which the elastic scattering length is le. De Jong and Beenakker were able to study
the crossover from the ballistic to the diffusive regime for an arbitrary ratio of s =
L/le. We have already considered the limiting cases s = 0, which is the ballistic BTK
limit, and the universal diffusive case s → ∞. Interesting for us is the intermediate
case s ∼ 1, which can be computed for both the normal and the superconducting
state using the scaling theory of the generalized conductance.[51, 95] The numerical
calculation yields Γ = 0.55 and N = 17 for s ∼ 1. De Jong and Beenakker also
showed that the shot-noise power can vary between zero and twice the Poisson
value, depending on the junction parameters.[51] Using Γ = 0.55 and N = 17, we
obtain for the Fano factors FN = 0.36 and FS = 0.77.

In view of the real device geometry, a refinement of the open cavity model is
appealing too. The real device is asymmetric in that the width of the contact at
the Nb side is wider than the constrictions at the exits. In addition, there is likely
a barrier at the interface of the 2DEG and the superconductor, the transparency of
which has been denoted by Γ in the previous models. The simplest way to calculate
ρ(T ) is to apply circuit theory [96] to the series connection of a tunnel junction with
a quantum-point contact (QPC). The tunnel junction is the element at the Nb side.
It is parameterized by its conductance Gt. The QPC models the narrow constriction
on the right side. It is parameterized by its conductance G = (2e2/h)N , i.e. by the
number of (open) channels. Though Γ does not appear in the model explicitly (only
the ratio G/Gt enters), it can be extracted from the fitted value which we obtain
for Gt. Gt can be expressed as G0ΓNwS/wN , where wS,N is the width of the 2DEG
at the S and at the N side, respectively. In trying to find the best match, we fix the
conductance in the normal state to the measured value and vary N to get the best
agreement with all measured parameters. This approach yields N = 11, Γ = 0.7,
FN = 0.33, and FS = 0.84.

Let us summarize the results of all the models. One may say that none yields
perfect agreement in all four measured parameters, i.e. GN , GS , FN , and FS . The
most realistic ones in terms of the actual geometry, i.e. the quasi-ballistic and cavity
with barrier models, yield reasonable agreement in all parameters. The Fano factors
are predicted to be slightly larger than measured. In fact, this trend holds true for
all models considered. The measured Fano factors are systematically smaller. We
suspect that the origin for this discrepancy is found in the third terminal, i.e. the
second outgoing lead of the Y-branch, which was left open in the measurements of
the conductance and noise. Electrons entering into this lead will relax and thermalize
before being re-injected into the device again. Relaxation in general reduces shot-
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noise.[98, 99, 100, 22, 101] With regard to the number of channels the different
models predict N = 9 . . . 17 for the channel number in the constriction. This is in
fair agreement with an estimate of the channel number based on the lithographic
width and the Fermi wavelength, yielding N ∼ 19. It is quite reasonable that the
channel number deduced electrically turns out to be somewhat smaller, because of
depletion in the vicinity of the MESA after etching.

5.5 Outlook and conclusions

In summary, we have realized a mesoscopic superconductor-normal beam-splitter
geometry in a solid state hybrid system. We can account for both the conductance
and shot-noise data by modeling the device as a highly transparent S-N interface
connected in series with a ‘short’ scattering region, which is in the quasi-ballistic
transport regime. The scattering region is formed by the cavity in the 2DEG between
the S-N interface and the two constrictions forming the electron beam-splitter. The
shot-noise measured across the superconductor and one arm of the beam-splitter is
enhanced relative to the normal state. The respective Fano factors are in reasonable
agreement with the Landauer description (scattering problem) of coherent transport.
Residual deviations, in particular in the vicinity of the gap energy in the differential
conductance measurements, are likely due to relaxation, a source of which is the
second arm of the beam-splitter which was left open in the reported experiments.
Current fluctuations can be suppressed by an extra terminal, even in the absence of
a net (average) current.

Our devices are very well suited to explore positive cross-correlations,[59] as have
recently been predicted in several theoretical papers.[59, 61, 35, 27, 62, 40] Of these
theoretical treatments, Ref. [40] is in closest correspondence with our experiments.
In Ref. [40], an electron cavity is connected to one superconducting and two normal
leads via point contacts. Positive correlations are predicted to appear for a dominant
coupling to the superconducting lead. The devices which we have studied in this
work have roughly similar couplings to the S and N leads. In the next step, one
has to make use of the ability of semiconductors to tune the transparency of the
constrictions with additional electrodes (split gates), which can be fabricated self-
aligned with the etched trenches. This would greatly help in the search for positive
correlations in solid-state nanostructures.
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Calculation of the transfer function

We need to know following elements in order to extract the spectrum of current
fluctuations SI from measured voltage fluctuations SV1,V2 :

1. The Bias resistance RB : The measured value of RB at low temperature was
∼ 1.037 MΩ.

2. The spectral density of the bias resistance RB : The bias resistance is thermally
anchored at the bottom of 1K pot in 3He system so that the temperature
of the resistance is about to that of 1K pot which has the actual measured
temperature of ∼ 1.9K. Thus the equilibrium (Thermal) noise of the bias
resistance is SB = 4kBT/RB ∼ 1.0× 10−28A2/Hz where, kB is the Boltzmann
constance and RB is the resistance of bias resistor.

3. The total capacitance Ctot of the setup: In our consideration, the main con-
tribution to the total capacitance is the capacitance from the bias lines CB

and the pair of noise detecting leads together with the amplifiers CL. i.e.
Ctot = CB + 2CL. From the independent measurement, we get CB = 230
pF and CL = 335 pF respectively. Alternatively, one can determine the total
capacitance of the measurement setup from the fits of the frequency depen-
dence of the measured voltage fluctuation spectrum SV1,V2 for various sample
resistances and frequencies (See Fig.4.4b). We found a reasonable agreement
with the measured value of 900 pF.

4. The noise measurement line resistance RL : The SMA cable was used for
the measurement lines of noise and it does not have any extra filters at room
temperature. RL ≈ 30Ω.

5. The spectral density of the current noise source of the amplifier: The input
current noise of the preamplifier is determined by measuring the output volt-
age fluctuations when the high resistance is connected at the input of the
preamplifier. The preamplifier input stage is characterized by its gain G, in-
put resistance Rin and input capacitance Cin and its current and voltage noise
sources in and vn (See Fig.A.1).
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First, let us characterize one of the pre-amplifier with a model circuit shown
in Fig.A.1. We use very simple and powerful method, ”superposition principle” :
Calculate one element by one element simply by putting others ’short’ for the voltage
sources and ’open’ for the current source when they are not in calculation. We see
from Fig.A.1 that there are three possible sources for the noise VS , vn and in which
are the external voltage source, voltage noise source and current noise source of the
amplifier respectively. From the first voltage source VS , we get the output voltage:

Vout,1 = G
RinVS

Rin + RS + jωCinRinRS
. (A.1)

Secondly, the voltage noise source vn in the amplifier itself contribute to the output
voltage directly, i.e. Vout,2 = Gvn and finally, the current noise source in amplifier
in made the noise contribution of:

Vout,3 = G
(RinRS)in

Rin + RS + jωCinRinRS
. (A.2)

Thus, the total output voltage from the amplifier is,

Vout = Vout,1 + Vout,2 + Vout,3

= G
{

vn +
R‖

1 + jωCinR‖

( VS

RS
+ in

)}
.

where R‖ = RinRS/(Rin + RS). In equilibrium, VS is just Johnson-Nyquist voltage
noise source of RS and the output spectral density Sout is given by

Sout = G2
{

SV +
R2

‖
1 + (ωCinR‖)2

(4kBT

RS
+ SAmp

)}
. (A.3)

where SV is the spectral density of vn and it can be measured by the shorting the
input of the amplifiers, i.e., Sout = G2SV . Here we measured SV of the two NF-LI75
amplifiers. Measured noise of two preamplifier was almost identical. See Fig. A.2.

RS

Cin

vn

in
RinVS G

Figure A.1: Model of the amplifier with some resistance RS and DC voltage source VS at
the input of the amplifier.
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It consists of a white noise part and a 1/f component and from the fit, we get the
reasonable value of spectral density

SV (f) = 2.4 × 10−18 +
1.05 × 10−15

f
[V 2/Hz] . (A.4)

For checking the current noise power spectrum from the amplifiers, we have to
measure first, the transfer function R2

‖/1+(ωCinR‖)2 using a broad-band AC source
in series with RS . In the next step, the spectral density Sout is measured by the
spectrum analyzer HP 89410A with the source resistance RS connected to the input
of the amplifier. Different resistances (10kΩ, 100kΩ, 1MΩ) were used and last two
give the same values of SAmp ∼ 5 × 10−28A2/Hz. Fig. A.2 shows both voltage and
current spectral density of the NF-preamplifier.
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Figure A.2: (a)The spectral density of the voltage noise vn of NF-LI75 preamplifier. It
can be measured by the shorting the input of the amplifiers, i.e. Sout = G2SV . Here we
measured SV of the two NF-LI75 amplifiers. It constitute with a white noise part and 1/f
component. (b) The spectral density of the current noise of the amplifier. From this we
deduce the capacitance of the amplifier 45 pF for each.
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We would like to turn to the characterization of the noise measurement setup
using the model circuit depicted in Fig.4.5. once again. However, at this time,
we calculate the expression of V1 and V2 including the capacitance of the voltage
lines CL and keep all the terms in the expression. The expression is getting more
complicated than the previous one and yields for V1, V2 :

V1 = v1 +
RS(iB + i + i1 + i2) +

[
RL

(
RS
RB

+ 1 + jωRSC
)

+ jωRLRSCL
1+jωRLCL

]
i1

(1 + jωRLCL)
(

RS
RB

+ 1 + jωRSC
)

+ 2jωRSCL

V2 = v2 +
RS(iB + i + i1 + i2) +

[
RL

(
RS
RB

+ 1 + jωRSC
)

+ jωRLRSCL
1+jωRLCL

]
i2

(1 + jωRLCL)
(

RS
RB

+ 1 + jωRSC
)

+ 2jωRSCL

. The cross-correlation of the two output voltages 〈V1 · V2〉 is given by:

SV1,V2 = 〈V1 · V2〉
= Z1 · Z1

(
〈iB · iB〉 + 〈i · i〉

)
+ Z2 · Z1〈i1 · i1〉 + Z1 · Z2〈i1 · i1〉

= Z1 · Z1(SB + SI) + (Z1 · Z2 + Z2 · Z1)Samp , (A.5)

where

Z1 =
RS

(1 + jωRLCL)
[
1 + jωRSCB + RS

RB

]
+ 2jωRSCL

(A.6)

Z2 =
RS + RL

[
1 + jωRSCB + RS

RB

]
+ jωRSRLCL

1+jωRLCL

(1 + jωRLCL)
[
1 + jωRSCB + RS

RB

]
+ 2jωRSCL

. (A.7)

We also calculate the power spectrum of the current fluctuations of the sample SI

from the measured cross-correlation spectrum SV1,V2 in the same way as before

SI =
1

|Z1|2
· SV1,V2 − SB − 2

Re{Z1Z2}
|Z1|2

· Samp . (A.8)

where Re{Z} is the real part of the complex number Z and

1
|Z1|2

=
1

R2
S

(
1 +

RS

RB
− ω2RLRSCLCB

)2

+
ω2

R2
S

(
RSCB + RLCL

RS

RB
+ RLCL + 2RSCL

)2
(A.9)

and

Re{Z1Z2}
|Z1|2

= 1 +
RL

RB
+

RL

RS
+

ω2R2
LC2

L

1 + ω2R2
LC2

L

. (A.10)
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Recalling the previous conditions, ωRLCL � 1, RL/RB � 1 and RL/RS � 1, the
right-hand side of the Eq.A.9 and A.10 are simplified to

1
|Z1|2

=
1 + (wCtotR‖)2

R2
‖

,
Re{Z1Z2}

|Z1|2
= 1 +

RL

R‖
,

where R‖ = RBR/(RB+R) and Ctot = CB+2CL. Hence, finally the power spectrum
of the current fluctuations of the sample SI is found to be

SI =
1 + (ωCtotR‖)2

R2
‖

SV1,V2 − SB − 2
(
1 +

RL

R‖

)
SAmp . (A.11)
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Appendix B

Process recipes

Ohmic contact1

• Rinse the InAs substrate with acetone and ethanol and blow dry with N2 gun.

• Spin PMMA at 6000rpm for 40 sec.(Time is set in the spinner).

• Bake at 175◦C for 30 min in the oven.

• Expose using I = 16 nA (Acceleration voltage = 35kV, Dose = 480 µC/cm2).

• Develop PMMA in MiBk : IPA = 1 : 3 for 45 sec.

• Rinse in IPA and blow dry with N2 gun.

• Clean the surface by RIE(Oxygen plasma) (O2 = 22%, Base pressure = 2e-5
mbar, Process pressure ∼ 250 mTorr, DC voltage = 110 ∼ 125 V, RF-Forward
∼ 50 W, RF-backward ∼ 5 W, time = 60 sec ).

• Dip in Hcl (37%) for 5 sec. to remove oxide layer.

• Evaporate the multilayers of (Ni 6 nm/Au 50 nm/Ge 20 nm/Au 60 nm/Ni 30
∼ 40 nm)

• Lift off in Acetone

• Anneal the multilayer (120◦C for 600 sec. in type 3, Pressure = 310 mbar →
275◦C for 120 sec. in type 3, Pressure 320 mbar).

• Check the contact resistance with probe station. It should shows few hundred
ohms or less.

1The alignment marks are formed at the same time with the ohmic contacts

75



76 B Process recipes

MESA etch

• Spin PMMA at 6000rpm for 40 sec.

• Expose of MESA etch structure (Beam current = 16 nA, Acceleration voltage
= 35kV, Dose = 480 µC/cm2).

• Develop PMMA in MiBk : IPA = 1 : 3 for 45s.

• Wet-etch of heterostructure with H3PO4 : H2O2 : H2O = 1 : 1 : 100 for 90s
(Typical etchant temperature ∼ 28◦C).

• Stop etch with DI-water and blow dry with N2 gun.

• Inspect with the optical microscope.

Nb deposition with PMGI resist

• Spin PMGI resist (PMGI 11 % in CP/THFA2 : Cyclopentanone = 7:1) at
4000rpm for 40 sec.

• Soft bake on hotplate at 250◦C for 2 min. ( → thickness ∼ 600nm)

• Evaporate Ge of thickness ≈ 50 nm.

• Spin PMMA at 6000rpm for 40 sec. and bake in oven for 30 min (→ thickness
of 630 nm).

• Expose (Beam current = 16 nA, Acceleration voltage = 35kV, Dose = 480
µC/cm2).

• Develop the PMMA in MiBk : IPA = 1 : 3 for 45s.

• RIE of Ge with CHF3 : O2 = 34 : 4 for 5 min. (etch rate ∼ 29nm/min.)

• RIE of PMGI with O2 plasma for 3 min. (O2 = 16%, Process pressure ∼ 250
mTorr, RF-Forward = 100 W → etch rate ∼ 250 nm/min.)

• Evaporation of Nb of thickness ∼ 100 nm.

• Lift off with warm (50◦C) MR 1165 remover for at least 30 min.

2Information in technical data sheet of NANOtm PMGI SF 11 from MicroChem Corp.
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Nb deposition procedure from NTT

• Clean the substrate at 160◦C for 10 min. in Ozone gas.

• Spin Poly (Phenyl Methacrylate-Co-Methacrylic Acid) resist[102, 103] at 6000
rpm for 50 sec. → Resist thickness : 300 ∼ 500 nm.

• Pre-bake in Oven at 200◦C for 50 min.

• Expose in JEOL JBX-6000FS (Acceleration voltage = 50 kV, Beam current
= 100 pA, Dose = 80 ∼ 160 µC/cm2)

• Develop in MIBK : ECH3 = 2 : 1 for 60 sec.

• Rinse in ECH for 60 sec.

• Post-bake in Oven at 115◦C for 10min.

• Etch the heterostructures with Citric acid (20%): H2O2 = 20 : 1 for 60 sec.
→ etching depth ∼ 60 nm.

• RF sputter cleaning with the power 10 W for 5 min in Ar gas at the pressure
5 mTorr.

• Deposit Nb of thickness ∼ 80 nm ( Background pressure before deposition is
< 10−9 Torr, Deposition rate ∼ 0.5 nm/sec.)4

• Lift-off in Acetone for 1 hour with ultrasonic vibration.

Mesoscopic beam splitter

• Spin PMMA at 6000rpm for 40 sec.

• Bake at 175◦C for 30 min in the oven.

• Exposure (For fine structures, Beam current = 40 pA, Acceleration voltage =
35kV, Area step size = 4.6 nm, Area dwell time = 4.2 µs., Area Dose ∼ 400
µC/cm2, Line step size = 4 nm, Line dwell time = 40 ∼ 70 µs., Line Dose =
300 ∼ 480 µC/cm2).

• Develop PMMA in MiBk : IPA = 1 : 3 for 45 sec.

• Rinse in IPA and blow dry with N2 gun.
3Ethylcyclohexane
4Nb electrodes were angle-deposited by electron beam deposition, where the sample was tilted

at 30 degree to the horizontal line
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• Fine wet etch with H3PO4 : H2O2 : H2O = 1 : 1 : 100 for 60s.

• Stop etch with DI-water and blow dry with N2 gun.

• Inspect with Philips SEM.

Gate-test sample

• Clean the substrate with acetone and ethanol

• Spin PMMA at 6000rpm for 40 sec.

• Bake at 175◦C for 30 min in the oven → thickness of ∼ 630 nm.

• A mesa definition by wet-etching (Refer the section MESA etch, etch depth ∼
150 nm).

• Alloyed Au-Ge-Ni ohmic contacts to the 2DEG (Refer the section Ohmic con-
tact).

• The fine structures etch (Refer the section Mesoscopic beam splitter, etch
depth ∼ 150 nm)

• Gate definition by evapotation of 4 nm Ti and 100 nm Au.
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