2,241 research outputs found

    Analytical study of coherence in seeded modulation instability

    Get PDF
    We derive analytical expressions for the coherence in the onset of modulation instability, in excellent agreement with thorough numerical simulations. As usual, we start by a linear perturbation analysis, where broadband noise is added to a continuous wave (CW) pump; then, we investigate the effect of adding a deterministic seed to the CW pump, a case of singular interest as it is commonly encountered in parametric amplification schemes. Results for the dependence of coherence on parameters such as fiber type, pump power, propagated distance, seed signal-to-noise ratio are presented. Finally, we show the importance of including higher-order linear and nonlinear dispersion when dealing with generation in longer wavelength regions (mid IR). We believe these results to be of relevance when applied to the analysis of the coherence properties of supercontinua generated from CW pumps.Comment: 6 pages, 8 figure

    Relativistic models for quasi-elastic neutrino scattering

    Full text link
    We present quasi-elastic neutrino-nucleus cross sections in the energy range from 150 MeV up to 5 GeV for the target nuclei 12C and 56Fe. A relativistic description of the nuclear dynamics and the neutrino-nucleus coupling is adopted. For the treatment of final-state interactions (FSI) we rely on two frameworks succesfully applied to exclusive electron-nucleus scattering: a relativistic optical potential and a relativistic multiple-scattering Glauber approximation. At lower energies, the optical-potential approach is considered to be the optimum choice, whereas at high energies a Glauber approach is more natural. Comparing the results of both calculations, it is found that the Glauber approach yields valid results down to the remarkably small nucleon kinetic energies of 200 MeV. We argue that the nuclear transparencies extracted from A(e,e'p) measurements can be used to obtain realistic estimates of the effect of FSI mechanisms on quasi-elastic neutrino-nucleus cross sections. We present two independent relativistic plane-wave impulse approximation (RPWIA) calculations of quasi-elastic neutrino-nucleus cross sections. They agree at the percent level, showing the reliability of the numerical techniques adopted and providing benchmark RPWIA results.Comment: revised version,28 pages, 7 figures, accepted in Phys.Rev.

    Universal decay law in charged-particle emission and exotic cluster radioactivity

    Full text link
    A linear universal decay formula is presented starting from the microscopic mechanism of the charged-particle emission. It relates the half-lives of monopole radioactive decays with the QQ-values of the outgoing particles as well as the masses and charges of the nuclei involved in the decay. This relation is found to be a generalization of the Geiger-Nuttall law in α\alpha radioactivity and explains well all known cluster decays. Predictions on the most likely emissions of various clusters are presented.Comment: 2 figure

    Huge Seebeck coefficients in non-aqueous electrolytes

    Full text link
    The Seeebeck coefficients of the non-aqueous electrolytes tetrabutylammonium nitrate, tetraoctylphosphonium bromide and tetradodecylammonium nitrate in 1-octanol, 1-dodecanol and ethylene-glycol are measured in a temperature range from T=30 to T=45 C. The Seebeck coefficient is generally of the order of a few hundreds of microvolts per Kelvin for aqueous solution of inorganic ions. Here we report huge values of 7 mV/K at 0.1M concentration for tetrabutylammonium nitrate in 1-dodecanol. These striking results open the question of unexpectedly large kosmotrope or "structure making" effects of tetraalkylammonium ions on the structure of alcohols.Comment: Submitted to J. Chem. Phy

    Thermoelectric energy recovery at ionic-liquid/electrode interface

    Get PDF
    A Thermally Chargeable Capacitor containing a binary solution of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide (EMIMTFSI) in acetonitrile is electrically charged by applying a tempera- ture gradient to two ideally polarisable electrodes. The corresponding thermoelectric coefficient is -1.7 mV/K for platinum foil electrodes and -0.3 mV/K for nanoporous carbon electrodes. Stored electrical energy is extracted by discharging the capacitor through a resistor. The measured capacitance of the electrode/ionic- liquid interface is 5 micro μ\muF for each platinum electrode while it becomes four orders of magnitude larger 36\approx 36 mF for a single nanoporous carbon electrode. Reproducibility of the effect through repeated charging-discharging cycles under a steady-state temperature gradient demonstrates the robustness of the electrical charging pro- cess at the liquid/electrode interface. The acceleration of the charging by convective flows is also observed. This offers the possibility to convert waste-heat into electric energy without exchanging electrons between ions and electrodes, in contrast to what occurs in most thermogalvanic cells.Comment: 8 pages, 11 figure
    corecore