2,282 research outputs found

    Low-cost error mitigation by symmetry verification

    Full text link
    We investigate the performance of error mitigation via measurement of conserved symmetries on near-term devices. We present two protocols to measure conserved symmetries during the bulk of an experiment, and develop a zero-cost post-processing protocol which is equivalent to a variant of the quantum subspace expansion. We develop methods for inserting global and local symetries into quantum algorithms, and for adjusting natural symmetries of the problem to boost their mitigation against different error channels. We demonstrate these techniques on two- and four-qubit simulations of the hydrogen molecule (using a classical density-matrix simulator), finding up to an order of magnitude reduction of the error in obtaining the ground state dissociation curve.Comment: Published versio

    A unified approach to explain contrary effects of hysteresis and smoothing in nonsmooth systems

    Get PDF
    Piecewise smooth dynamical systems make use of discontinuities to model switching between regions of smooth evolution. This introduces an ambiguity in prescribing dynamics at the discontinuity: should it be given by a limiting value on one side or other of the discontinuity, or a member of some set containing those values? One way to remove the ambiguity is to regularize the discontinuity, the most common being either to smooth out the discontinuity, or to introduce a hysteresis between switching in one direction or the other across the discontinuity. Here we show that the two can in general lead to qualitatively different dynamical outcomes. We then define a higher dimensional model with both smoothing and hysteresis, and study the competing limits in which hysteretic or smoothing effect dominate the behaviour, only the former of which correspond to Filippov's standard `sliding modes'

    Llibertat i pluralitat als mitjans pĂșblics

    Get PDF

    Damage identification in composite panels using guided waves

    Get PDF
    A methodology for the identification of barely visible impact damage using guided waves on a typical aircraft composite structure is implemented. Delaminations and debondings have been introduced in two stiffened panels by means of impact loads

    A unified approach to explain contrary effects of hysteresis and smoothing in nonsmooth systems

    Get PDF
    Piecewise smooth dynamical systems make use of discontinuities to model switching between regions of smooth evolution. This introduces an ambiguity in prescribing dynamics at the discontinuity: should the dynamics be given by a limiting value on one side or other of the discontinuity, or a member of some set containing those values? One way to remove the ambiguity is to regularize the discontinuity, the most common being either to smooth it out, or to introduce a hysteresis between switching in one direction or the other across it. Here we show that the two can in general lead to qualitatively different dynamical outcomes. We then define a higher dimensional model with both smoothing and hysteresis, and study the competing limits in which hysteretic or smoothing effects dominate the behaviour, only the former of which correspond to Filippov’s standard ‘sliding modes’.Peer ReviewedPostprint (author's final draft

    High Impact Practices: Student Engagement and Retention

    Full text link
    Community college students face special challenges that can impede their academic progress, resulting in lower grades and persistence than students in selective four-year colleges. Kingsborough Community College in Brooklyn, New York, successfully addresses these challenges with learning communities: small cohorts of students in a blocked program of study, which includes developmental or basic English, a one-credit student skills course, and a social or behavioral science course. This research analyzes the short-term effects of the model by comparing a sample of 267 students enrolled in four learning community and four regular sections of sociology and psychology classes. The results demonstrate a high positive impact for learning communities on student success as measured by grades and course completion rates, with higher levels of engagement and lower rates of absences in learning community sections as the key causal mechanisms. That is, statistically significant correlations between mode of delivery and grades are reduced when controlling for absences, elaborating on and perhaps explaining the well-established relationship between learning communities and short-term student success

    A computational framework for polyconvex large strain elasticity

    Get PDF
    This paper presents a novel computational formulation for large strain polyconvex elasticity. The formulation, based on the original ideas introduced by Schröder etal. (2011), introduces the deformation gradient (the fibre map), its adjoint (the area map) and its determinant (the volume map) as independent kinematic variables of a convex strain energy function. Compatibility relationships between these variables and the deformed geometry are enforced by means of a multi-field variational principle with additional constraints. This process allows the use of different approximation spaces for each variable. The paper extends the ideas presented in Schröder etal. (2011) by introducing conjugate stresses to these kinematic variables which can be used to define a generalised convex complementary energy function and a corresponding complementary energy principle of the Hellinger-Reissner type, where the new conjugate stresses are primary variables together with the deformed geometry. Both compressible and incompressible or nearly incompressible elastic models are considered. A key element to the developments presented in the paper is the new use of a tensor cross product, presented for the first time by de Boer (1982), page 76, which facilitates the algebra associated with the adjoint of the deformation gradient. For the numerical examples, quadratic interpolation of the displacements, piecewise linear interpolation of strain and stress fields and piecewise constant interpolation of the Jacobian and its stress conjugate are considered for compressible cases. In the case of incompressible materials two formulations are presented. First, continuous quadratic interpolation for the displacement together with piecewise constant interpolation for the pressure and second, linear continuous interpolation for both displacement and pressure stabilised via a Petrov-Galerkin technique

    Vortices in simulations of solar surface convection

    Full text link
    We report on the occurrence of small-scale vortices in simulations of the convective solar surface. Using an eigenanalysis of the velocity gradient tensor, we find the subset of high vorticity regions in which the plasma is swirling. The swirling regions form an unsteady, tangled network of filaments in the turbulent downflow lanes. Near-surface vertical vortices are underdense and cause a local depression of the optical surface. They are potentially observable as bright points in the dark intergranular lanes. Vortex features typically exist for a few minutes, during which they are moved and twisted by the motion of the ambient plasma. The bigger vortices found in the simulations are possibly, but not necessarily, related to observations of granular-scale spiraling pathlines in "cork animations" or feature tracking.Comment: 11 pages, 13 figures, accepted for publication in A&A, complementary movies at http://www.mps.mpg.de/homes/moll/strudel/papermovies

    Calculating energy derivatives for quantum chemistry on a quantum computer

    Get PDF
    Modeling chemical reactions and complicated molecular systems has been proposed as the `killer application' of a future quantum computer. Accurate calculations of derivatives of molecular eigenenergies are essential towards this end, allowing for geometry optimization, transition state searches, predictions of the response to an applied electric or magnetic field, and molecular dynamics simulations. In this work, we survey methods to calculate energy derivatives, and present two new methods: one based on quantum phase estimation, the other on a low-order response approximation. We calculate asymptotic error bounds and approximate computational scalings for the methods presented. Implementing these methods, we perform the world's first geometry optimization on an experimental quantum processor, estimating the equilibrium bond length of the dihydrogen molecule to within 0.014 Angstrom of the full configuration interaction value. Within the same experiment, we estimate the polarizability of the H2 molecule, finding agreement at the equilibrium bond length to within 0.06 a.u. (2% relative error).Comment: 19 pages, 1 page supplemental, 7 figures. v2 - tidied up and added example to appendice
    • 

    corecore