29 research outputs found

    Geographic distribution at subspecies resolution level: closely related Rhodopirellula species in European coastal sediments.

    Get PDF
    Members of the marine genus Rhodopirellula are attached living bacteria and studies based on cultured Rhodopirellula strains suggested that three closely related species R. baltica, 'R. europaea' and 'R. islandica' have a limited geographic distribution in Europe. To address this hypothesis, we developed a nested PCR for a single gene copy detection of a partial acetyl CoA synthetase (acsA) from intertidal sediments collected all around Europe. Furthermore, we performed growth experiments in a range of temperature, salinity and light conditions. A combination of Basic Local Alignment Search Tool (BLAST) and Minimum Entropy Decomposition (MED) was used to analyze the sequences with the aim to explore the geographical distribution of the species and subspecies. MED has been mainly used for the analysis of the 16S rRNA gene and here we propose a protocol for the analysis of protein-coding genes taking into account the degeneracy of the codons and a possible overestimation of functional diversity. The high-resolution analysis revealed differences in the intraspecies community structure in different geographic regions. However, we found all three species present in all regions sampled and in agreement with growth experiments we demonstrated that Rhodopirellula species do not have a limited geographic distribution in Europe

    Pink‐ and orange‐pigmented Planctomycetes produce saproxanthin‐type carotenoids including a rare C45 carotenoid

    Get PDF
    Planctomycetes, are ubiquitous and environmentally important Gram-negative aquatic bacteria with key roles in global carbon and nitrogen cycles. Many planctomycetal species have a pink or orange colour and have been suggested to produce carotenoids. Potential applications as food colorants or anti-oxidants have been proposed. Hitherto, the planctomycetal metabolism is largely unexplored and the strain pigmentation has not been identified. For a holistic view on the complex planctomycetal physiology we analyzed carotenoid profiles of the pink-pigmented strain Rhodopirellula rubra LF2T and of the orange strain Rubinisphaera brasiliensis Gr7. During LC-MS/MS analysis of culture extracts we were able to identify three saproxanthin-type carotenoids including a rare C45 carotenoid. These compounds, saproxanthin, dehydroflexixanthin and 2’-isopentenyldehydrosaproxanthin, derive from the common carotenoid precursor lycopene and are characterized by related end groups, namely a 3-hydroxylated β-carotene-like cyclohexene ring as one end group and simple hydration on the other end of the molecule. Based on the observed molecule structure we present putative pathways for their biosynthesis. Results support Planctomycetes as a promising, yet mostly untapped source of carotenoids

    Genome Analysis of Planctomycetes Inhabiting Blades of the Red Alga

    Get PDF
    Porphyra is a macrophytic red alga of the Bangiales that is important ecologically and economically. We describe the genomes of three bacteria in the phylum Planctomycetes (designated P1, P2 and P3) that were isolated from blades of Porphyra umbilicalis (P.um.1). These three Operational Taxonomic Units (OTUs) belong to distinct genera; P2 belongs to the genus Rhodopirellula, while P1 and P3 represent undescribed genera within the Planctomycetes. Comparative analyses of the P1, P2 and P3 genomes show large expansions of distinct gene families, which can be widespread throughout the Planctomycetes (e.g., protein kinases, sensors/response regulators) and may relate to specific habitat (e.g., sulfatase gene expansions in marine Planctomycetes) or phylogenetic position. Notably, there are major differences among the Planctomycetes in the numbers and sub-functional diversity of enzymes (e.g., sulfatases, glycoside hydrolases, polysaccharide lyases) that allow these bacteria to access a range of sulfated polysaccharides in macroalgal cell walls. These differences suggest that the microbes have varied capacities for feeding on fixed carbon in the cell walls of P.um.1 and other macrophytic algae, although the activities among the various bacteria might be functionally complementary in situ. Additionally, phylogenetic analyses indicate augmentation of gene functions through expansions arising from gene duplications and horizontal gene transfers; examples include genes involved in cell wall degradation (e.g., κ-carrageenase, alginate lyase, fucosidase) and stress responses (e.g., efflux pump, amino acid transporter). Finally P1 and P2 contain various genes encoding selenoproteins, many of which are enzymes that ameliorate the impact of environmental stresses that occur in the intertidal habitat

    rpoB gene as a novel molecular marker to infer phylogeny in Planctomycetales

    No full text
    The 16S rRNA gene has been used in the last decades as a gold standard for determining the phylogenetic position of bacteria and their taxonomy. It is a well conserved gene, with some variations, present in all bacteria and allows the reconstruction of genealogies of microorganisms. Nevertheless, this gene has its limitations when inferring phylogenetic relationships between closely related isolates. To overcome this problem, DNA-DNA hybridization appeared as a solution to clarify interspecies relationships when the sequence similarity of the 16S rRNA gene is above 97 %. However, this technique is time consuming, expensive and laborious and so, researchers developed other molecular markers such as sequencing of housekeeping or functional genes for accurate determination of bacterial phylogeny. One of these genes that have been used successfully, particularly in clinical microbiology, codes for the beta subunit of the RNA polymerase (rpoB). The rpoB gene is sufficiently conserved to be used as a molecular clock, it is present in all bacteria and it is a mono-copy gene. In this study, rpoB gene sequencing was applied to the phylum Planctomycetes. Based on the genomes of 19 planctomycetes it was possible to determine the correlation between the rpoB gene sequence and the phylogenetic position of the organisms at a 95-96 % sequence similarity threshold for a novel species. A 1200-bp fragment of the rpoB gene was amplified from several new planctomycetal isolates and their intra and inter-species relationships to other members of this group were determined based on a 96.3 % species border and 98.2 % for intraspecies resolution

    Rhodopirellula lusitana sp nov and Rhodopirellula rubra sp nov., isolated from the surface of macroalgae

    No full text
    Twenty two strains of Rhodopirellula were isolated from the epiphytic community of several marine macroalgae and separated into two groups, designated as group B and group C. In this study, we characterized these groups as two novel species belonging to the genus Rhodopirellula. These strains were represented by pleomorphic cells that were arranged in rosettes and formed pink- or red-pigmented colonies. The organisms were chemoorganotrophic and required vitamin B12 for growth. Their optimal temperature for growth was around 25 degrees C. Major fatty acids were C-18:1 omega 09C, C-16:0 and C-16:1 omega 7c/C-16:1 omega 6c. Phosphatidylcholine and phosphatidylglycerol were the major polar lipids. Unidentified phospholipids were also present. The 16S rDNA sequence analysis confirmed the affiliation of these organisms to the order Planctomycetales, genus Rhodopirellula, with R. baltica as the closest phylogenetic relative. The analysis of a partial sequence of the gene encoding the beta-subunit of RNA polymerase (rpoB) confirmed the phylogenetic separation of the isolates into two different species of the genus Rhodopirellula. The 16S rRNA sequences from strains of group B revealed their widespread occurrence across the world, whereas strains of group C were not observed before. On the basis of physiological, biochemical, chemotaxonomic and genetic characteristics we proc pose that our isolates represent two new species of Rhodopirellula, Rhodopirellula rubra sp. nov. (type strain is LF2(T) = DSM 25,459 = CECT 8075) and Rhodopirellula lusitana sp. nov. (type strain is UC17(T) = DSM 25,457 =LMG 27,777). (C) 2014 Published by Elsevier GmbH

    Epiphytic Planctomycetes communities associated with three main groups of macroalgae

    No full text
    Planctomycetes, a unique group of widespread and understudied bacteria, are known to be associated with macroalgae. The temporal dynamics and the host-specific association of planctomycetal communities on Fucus spiralis, Ulva sp. and Chondrus crispus from two locations in the North Coast of Portugal were assessed both by denaturing gradient gel electrophoresis with group-specific primers and 16S rDNA amplicon libraries. The epiphytic planctomycetal communities showed a significant association with the host macroalgal species independently of the geographical location and the season. This pattern was confirmed by clone libraries of winter and summer samples: we obtained 720 16S rRNA gene sequences that represented 44 operational taxonomic units (OTUs) within the phylum Planctomycetes. Most of the OTUs belonged to Blastopirellula, followed by Rhodopirellula, Planctomyces, the Pir4 lineage and the uncultured class OM190 (this last one nearly 30% of the OTUs). Ulva sp. and C. crispus had more diverse planctomycetal communities than F. spiralis. Analysis of beta diversity showed that the planctomycetal microbiome was host specific. We hypothesize that the specific association of Planctomycetes and their macroalgal hosts is likely determined by nutritional molecules provided by the algae and the set of sulfatases inherent to each Planctomycetes species. © FEMS 2017.This work was partially supported by the Strategic Funding UID/Multi/04423/2013 through national funds provided by FCT – Foundation for Science and Technology and European Regional Development Fund (ERDF), in the framework of the programme PT2020. The first author was financed by FCT [PhD grant SFRH/BD/35933/2007] and by a Marie Curie short term fellowship Ph.D. stipend in MarMic EST at Max Planck Institute for Marine Microbiology, Bremen. The work was also partially supported by a US NIH National Institute of General Medical Sciences INBRE award grant P20 GM103475 attributed to F. G-V
    corecore