5,555 research outputs found

    Non-sequential double ionization below laser-intensity threshold: Anticorrelation of electrons without excitation of parent ion

    Full text link
    Two-electron correlated spectra of non-sequential double ionization below laser-intensity threshold are known to exhibit back-to-back scattering of the electrons, viz., the anticorrelation of the electrons. Currently, the widely accepted interpretation of the anticorrelation is recollision-induced excitation of the ion plus subsequent field ionization of the second electron. We argue that another mechanism, namely simultaneous electron emission, when the time of return of the rescattered electron is equal to the time of liberation of the bounded electron (the ion has no time for excitation), can also explain the anticorrelation of the electrons in the deep below laser-intensity threshold regime. Our conclusion is based on the results of the numerical solution of the time-dependent Schr\"{o}dinger equation for a model system of two one-dimensional electrons as well as an adiabatic analytic model that allows for a closed-form solution.Comment: 6 pages and 3 figure

    Existence and Uniqueness Results for Difference Φ-Laplacian Boundary Value Problems

    Get PDF
    This paper is devoted to study the existence and uniqueness of solutions to nonlinear difference Φ-Laplacian boundary value problems with mixed and Dirichlet boundary conditions

    pH-triggered pore-forming peptides with strong composition-dependent membrane selectivity

    Get PDF
    Peptides that self-assemble into nanometer-sized pores in lipid bilayers could have utility in a variety of biotechnological and clinical applications if we can understand their physical chemical properties and learn to control their membrane selectivity. To empower such control, we have used synthetic molecular evolution to identify the pH-dependent delivery peptides, a family of peptides that assemble into macromolecule-sized pores in membranes at low peptide concentration but only at pH < ∼6. Further advancements will also require better selectivity for specific membranes. Here, we determine the effect of anionic headgroups and bilayer thickness on the mechanism of action of the pH-dependent delivery peptides by measuring binding, secondary structure, and macromolecular poration. The peptide pHD15 partitions and folds equally well into zwitterionic and anionic membranes but is less potent at pore formation in phosphatidylserine-containing membranes. The peptide also binds and folds similarly in membranes of various thicknesses, but its ability to release macromolecules changes dramatically. It causes potent macromolecular poration in vesicles made from phosphatidylcholine with 14 carbon acyl chains, but macromolecular poration decreases sharply with increasing bilayer thickness and does not occur at any peptide concentration in fluid bilayers made from phosphatidylcholine lipids with 20-carbon acyl chains. The effects of headgroup and bilayer thickness on macromolecular poration cannot be accounted for by the amount of peptide bound but instead reflect an inherent selectivity of the peptide for inserting into the membrane-spanning pore state. Molecular dynamics simulations suggest that the effect of thickness is due to hydrophobic match/mismatch between the membrane-spanning peptide and the bilayer hydrocarbon. This remarkable degree of selectivity based on headgroup and especially bilayer thickness is unusual and suggests ways that pore-forming peptides with exquisite selectivity for specific membranes can be designed or evolved

    Wigner phase space distribution as a wave function

    Full text link
    We demonstrate that the Wigner function of a pure quantum state is a wave function in a specially tuned Dirac bra-ket formalism and argue that the Wigner function is in fact a probability amplitude for the quantum particle to be at a certain point of the classical phase space. Additionally, we establish that in the classical limit, the Wigner function transforms into a classical Koopman-von Neumann wave function rather than into a classical probability distribution. Since probability amplitude need not be positive, our findings provide an alternative outlook on the Wigner function's negativity.Comment: 6 pages and 2 figure

    Study of infrared scintillations in gaseous and liquid argon - Part II: light yield and possible applications

    Full text link
    We present here a comprehensive study of the light yield of primary and secondary scintillations produced in gaseous and liquid Ar in the near infrared (NIR) and visible region, at cryogenic temperatures. The measurements were performed using Geiger-mode avalanche photodiodes (GAPDs) and pulsed X-ray irradiation. The primary scintillation yield of the fast emission component in gaseous Ar was found to be independent of temperature in the range of 87-160 K; it amounted to 17000+/-3000 photon/MeV in the NIR in the range of 690-1000 nm. In liquid Ar at 87 K, the primary scintillation yield of the fast component was considerably reduced, amounting to 510+/-90 photon/MeV, in the range of 400-1000 nm. Proportional NIR scintillations (electroluminescence) in gaseous Ar were also observed; their amplification parameter at 160 K was measured to be 13 photons per drifting electron per kV. No proportional scintillations were observed in liquid Ar up to the electric fields of 30 kV/cm. The applications of NIR scintillations in dark matter search and coherent neutrino-nucleus scattering experiments and in ion beam radiotherapy are considered.Comment: 20 pages, 11 figures. Submitted to JINS

    High-Speed and Wide-Field Photometry with TORTORA

    Get PDF
    We present the photometric analysis of the extended sky fields observed by the TORTORA optical monitoring system. The technology involved in the TORTORA camera is based on the use of a fast TV-CCD matrix with an image intensifier. This approach can both significantly reduce the readout noise and shorten the focal length following to monitor relatively large sky regions with high temporal resolution and adequate detection limit. The performance of the system has been tested using the relative magnitudes of standard stars by means of long image sequences collected at different airmasses and at various intensities of the moon illumination. As expected from the previous laboratory measurements, artifact sources are negligible and do not affect the photometric results. The following analysis is based on a large sample of images acquired by the TORTORA instrument since July 2006

    Phase diagram of YBa2_2Cu3_3O7y_{7-y} at T<<Tc_c based on Cu(2) transverse nuclear relaxation

    Full text link
    Two maxima in transverse relaxation rate of Cu(2) nuclei in YBa2_2Cu3_3O7y_{7-y} are observed, at T = 35 K and T = 47 K. Comparison of the 63^{63}Cu(2) and 65^{65}Cu(2) rates at T = 47 K indicates the magnetic character of relaxation. The enhancement at T = 47 K of fluctuating local magnetic fields perpendicular to the CuO2_2 planes is connected with the critical fluctuations of orbital currents. Maximum at T = 35 K is connected with the appearance of inhomogeneous supeconducting phase. Together with data published to date, our experimental results allow to suggest a qualitatively new phase diagram of the superconducting phase.Comment: 4 LaTEX pages + 3 figures in *.ps forma

    Higher Partial Waves in p+p->p+p+eta near Threshold

    Full text link
    Exclusive measurements of the production of eta mesons in the p+p->p+p+eta reaction have been carried out at excess energies of 16 and 37 MeV above threshold. The deviations from phase space are dominated by the proton-proton final state interaction and this influences particularly the energy distribution of the eta meson. However, evidence is also presented at the higher energy for the existence of an anisotropy in the angular distributions of the eta meson and also of the final proton-proton pair, probably to be associated with D-waves in this system interfering with the dominant S-wave term. The sign of the eta angular anisotropy suggests that rho-exchange is important for this reaction.Comment: 16 pages, LaTeX2e, 3 EPS Figures, Updated version, Accepted for publication in Phys. Lett.
    corecore