6,731 research outputs found

    Power filtration of CMB observational data

    Full text link
    We propose a power filter Gp for linear reconstruction of the CMB signal from observational maps. This Gp filter preserves the power spectrum of the CMB signal in contrast to the Wiener filter which diminishes the power spectrum of the reconstructed CMB signal. We demonstrate how peak statistics and a cluster analysis can be used to estimate the probability of the presence of a CMB signal in observational records. The efficiency of the Gp filter is demonstrated on a toy model of an observational record consisting of a CMB signal and noise in the form of foreground point sources.Comment: 17 pages; 4 figures; submitted to International Journal of Modern Physic

    Friends or foes? Relational dissonance and adolescent psychological wellbeing

    Get PDF
    The interaction of positive and negative relationships (i.e. I like you, but you dislike me - referred to as relational dissonance) is an underexplored phenomenon. Further, it is often only poor (or negative) mental health that is examined in relation to social networks, with little regard for positive psychological wellbeing. Finally, these issues are compounded by methodological constraints. This study explores a new concept of relational dissonance alongside mutual antipathies and friendships and their association with mental health using multivariate exponential random graph models with an Australian sample of secondary school students. Results show male students with relationally dissonant ties have lower positive mental health measures. Girls with relationally dissonant ties have lower depressed mood, but those girls being targeted by negative ties are more likely to have depressed mood. These findings have implications for the development of interventions focused on promoting adolescent wellbeing and consideration of the appropriate measurement of wellbeing and mental illness

    Critical conditions for the wetting of soils

    Get PDF
    The wettability of soil is of great importance for plants and soil biota and in determining whether flooding and soil erosion will occur. The analysis used in common measurements of soil hydrophobicity makes the assumption that water always enters soils if the average contact angle between the soil and water is 90 degrees or lower; these tests have been used for decades. The authors show theoretically and experimentally that water cannot enter many soils unless the contact angle is considerably lower than this, down to approximately 50 degrees. This difference generates serious errors in determining and modeling soil wetting behavior

    A Search for Stellar Obscuration Events due to Dark Clouds

    Get PDF
    The recent detections of a large population of faint submillimetre sources, an excess halo gamma-ray background, and the extreme scattering events observed for extragalactic radio sources have been explained as being due to baryonic dark matter in the form of small, dark, gas clouds. In this paper we present the results of a search for the transient stellar obscurations such clouds are expected to cause. We examine the Macho project light curves of 48 x 10^6 stars toward the Galactic bulge, LMC and SMC for the presence of dark cloud extinction events. We find no evidence for the existence of a population of dark gas clouds with Av > 0.2 and masses between ~ 10^-4 and 10^-2 M_solar in the Galactic disk or halo. However, it is possible that such dark cloud populations could exist if they are clustered in regions away from the observed lines of sight.Comment: 13 pages, 9 figures, submitted to Ap

    An Intermediate Luminosity Transient in NGC300: The Eruption of a Dust-Enshrouded Massive Star

    Full text link
    [abridged] We present multi-epoch high-resolution optical spectroscopy, UV/radio/X-ray imaging, and archival Hubble and Spitzer observations of an intermediate luminosity optical transient recently discovered in the nearby galaxy NGC300. We find that the transient (NGC300 OT2008-1) has a peak absolute magnitude of M_bol~-11.8 mag, intermediate between novae and supernovae, and similar to the recent events M85 OT2006-1 and SN2008S. Our high-resolution spectra, the first for this event, are dominated by intermediate velocity (~200-1000 km/s) hydrogen Balmer lines and CaII emission and absorption lines that point to a complex circumstellar environment, reminiscent of the yellow hypergiant IRC+10420. In particular, we detect broad CaII H&K absorption with an asymmetric red wing extending to ~1000 km/s, indicative of gas infall onto a massive and relatively compact star (blue supergiant or Wolf-Rayet star); an extended red supergiant progenitor is unlikely. The origin of the inflowing gas may be a previous ejection from the progenitor or the wind of a massive binary companion. The low luminosity, intermediate velocities, and overall similarity to a known eruptive star indicate that the event did not result in a complete disruption of the progenitor. We identify the progenitor in archival Spitzer observations, with deep upper limits from Hubble data. The spectral energy distribution points to a dust-enshrouded star with a luminosity of about 6x10^4 L_sun, indicative of a ~10-20 M_sun progenitor (or binary system). This conclusion is in good agreement with our interpretation of the outburst and circumstellar properties. The lack of significant extinction in the transient spectrum indicates that the dust surrounding the progenitor was cleared by the outburst.Comment: Submitted to ApJ; emulateapj style; 39 pages; 26 figure

    Computing CMB Anisotropy in Compact Hyperbolic Spaces

    Get PDF
    The measurements of CMB anisotropy have opened up a window for probing the global topology of the universe on length scales comparable to and beyond the Hubble radius. For compact topologies, the two main effects on the CMB are: (1) the breaking of statistical isotropy in characteristic patterns determined by the photon geodesic structure of the manifold and (2) an infrared cutoff in the power spectrum of perturbations imposed by the finite spatial extent. We present a completely general scheme using the regularized method of images for calculating CMB anisotropy in models with nontrivial topology, and apply it to the computationally challenging compact hyperbolic topologies. This new technique eliminates the need for the difficult task of spatial eigenmode decomposition on these spaces. We estimate a Bayesian probability for a selection of models by confronting the theoretical pixel-pixel temperature correlation function with the COBE-DMR data. Our results demonstrate that strong constraints on compactness arise: if the universe is small compared to the `horizon' size, correlations appear in the maps that are irreconcilable with the observations. If the universe is of comparable size, the likelihood function is very dependent upon orientation of the manifold wrt the sky. While most orientations may be strongly ruled out, it sometimes happens that for a specific orientation the predicted correlation patterns are preferred over the conventional infinite models.Comment: 15 pages, LaTeX (IOP style included), 3 color figures (GIF) in separate files. Minor revision to match the version accepted in Class. Quantum Grav.: Proc. of Topology and Cosmology, Cleveland, 1997. The paper can be also downloaded from http://www.cita.utoronto.ca/~pogosyan/cwru_proc.ps.g

    The long-period Galactic Cepheid RS Puppis - III. A geometric distance from HST polarimetric imaging of its light echoes

    Full text link
    As one of the most luminous Cepheids in the Milky Way, the 41.5-day RS Puppis is an analog of the long-period Cepheids used to measure extragalactic distances. An accurate distance to this star would therefore help anchor the zero-point of the bright end of the period-luminosity relation. But, at a distance of about 2 kpc, RS Pup is too far away for measuring a direct trigonometric parallax with a precision of a few percent with existing instrumentation. RS Pup is unique in being surrounded by a reflection nebula, whose brightness varies as pulses of light from the Cepheid propagate outwards. We present new polarimetric imaging of the nebula obtained with HST/ACS. The derived map of the degree of linear polarization pL allows us to reconstruct the three-dimensional structure of the dust distribution. To retrieve the scattering angle from the pL value, we consider two different polarization models, one based on a Milky Way dust mixture and one assuming Rayleigh scattering. Considering the derived dust distribution in the nebula, we adjust a model of the phase lag of the photometric variations over selected nebular features to retrieve the distance of RS Pup. We obtain a distance of 1910 +/- 80 pc (4.2%), corresponding to a parallax of 0.524 +/- 0.022 mas. The agreement between the two polarization models we considered is good, but the final uncertainty is dominated by systematics in the adopted model parameters. The distance we obtain is consistent with existing measurements from the literature, but light echoes provide a distance estimate that is not subject to the same systematic uncertainties as other estimators (e.g. the Baade-Wesselink technique). RS Pup therefore provides an important fiducial for the calibration of systematic uncertainties of the long-period Cepheid distance scale.Comment: 14 pages, 14 figures, accepted for publication in Astronomy & Astrophysic
    • …
    corecore