The measurements of CMB anisotropy have opened up a window for probing the
global topology of the universe on length scales comparable to and beyond the
Hubble radius. For compact topologies, the two main effects on the CMB are: (1)
the breaking of statistical isotropy in characteristic patterns determined by
the photon geodesic structure of the manifold and (2) an infrared cutoff in the
power spectrum of perturbations imposed by the finite spatial extent. We
present a completely general scheme using the regularized method of images for
calculating CMB anisotropy in models with nontrivial topology, and apply it to
the computationally challenging compact hyperbolic topologies. This new
technique eliminates the need for the difficult task of spatial eigenmode
decomposition on these spaces. We estimate a Bayesian probability for a
selection of models by confronting the theoretical pixel-pixel temperature
correlation function with the COBE-DMR data. Our results demonstrate that
strong constraints on compactness arise: if the universe is small compared to
the `horizon' size, correlations appear in the maps that are irreconcilable
with the observations. If the universe is of comparable size, the likelihood
function is very dependent upon orientation of the manifold wrt the sky. While
most orientations may be strongly ruled out, it sometimes happens that for a
specific orientation the predicted correlation patterns are preferred over the
conventional infinite models.Comment: 15 pages, LaTeX (IOP style included), 3 color figures (GIF) in
separate files. Minor revision to match the version accepted in Class.
Quantum Grav.: Proc. of Topology and Cosmology, Cleveland, 1997. The paper
can be also downloaded from
http://www.cita.utoronto.ca/~pogosyan/cwru_proc.ps.g