402 research outputs found

    A new generation of real-time systems in the JET tokamak

    Get PDF
    Recently a new recipe for developing and deploying real-time systems has become increasingly adopted in the JET tokamak. Powered by the advent of x86 multi-core technology and the reliability of the JET’s well established Real-Time Data Network (RTDN) to handle all real-time I/O, an official Linux vanilla kernel has been demonstrated to be able to provide realtime performance to user-space applications that are required to meet stringent timing constraints. In particular, a careful rearrangement of the Interrupt ReQuests’ (IRQs) affinities together with the kernel’s CPU isolation mechanism allows to obtain either soft or hard real-time behavior depending on the synchronization mechanism adopted. Finally, the Multithreaded Application Real-Time executor (MARTe) framework is used for building applications particularly optimised for exploring multicore architectures. In the past year, four new systems based on this philosophy have been installed and are now part of the JET’s routine operation. The focus of the present work is on the configuration and interconnection of the ingredients that enable these new systems’ real-time capability and on the impact that JET’s distributed real-time architecture has on system engineering requirements, such as algorithm testing and plant commissioning. Details are given about the common real-time configuration and development path of these systems, followed by a brief description of each system together with results regarding their real-time performance. A cycle time jitter analysis of a user-space MARTe based application synchronising over a network is also presented. The goal is to compare its deterministic performance while running on a vanilla and on a Messaging Real time Grid (MRG) Linux kernel

    D-shaped configurations in FTU for testing liquid lithium limiter: Preliminary studies and experiments

    Get PDF
    The feasibility of getting "D" shaped plasma configurations in FTU, with a possible X point close to the first wall, has been investigated with the aim of achieving an H-mode regime in this machine. This regime could allow both evaluating the thermal effects on the liquid lithium limiter due to the possible Edge Localized Modes and studying the L-H transition properties in low recycling conditions due to the presence of lithium.. An alternative design for the magnetic system in FTU has been also proposed, to realize an X-point inside the plasma chamber, close to the Liquid Lithium Limiter.Preliminary experiments with elongated configurations and limited ECRH additional heating power did not allowed approaching the L-H transition but they were used to develop a proper elongation control. This controller allowed guaranteeing the vertical stability in elongated configurations despite the reduced power available for the horizontal field coils in FTU. The elongation was stably keep over 1.2, while the lithium limiter was very close to the last close flux surface. Neither limiter damages nor plasma pollution were observed in these configurations.A possible alternative connection of the poloidal field coils in FTU is here proposed, with the aim of achieving a true X-point configuration with a magnetic single null well inside the plasma chamber and strike points on the lithium limiter. A preliminary assessment of this design allowed estimating the required power supply upgrade and showed its compatibility with the existing mechanical structure and cooling system, at least for plasmas with current up to 300 kA and flat-top duration up to 4s. Keywords: FTU, Liquid lithium limiter, L-H transition, X-point, Plasma elongatio

    Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution

    Get PDF
    Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n  =  2 RMP maintaining good confinement HH(98,y2)≈0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.Peer reviewe

    Current drive at plasma densities required for thermonuclear reactors

    Get PDF
    Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors

    Model for screening of resonant magnetic perturbations by plasma in a realistic tokamak geometry and its impact on divertor strike points

    Full text link
    This work addresses the question of the relation between strike-point splitting and magnetic stochasticity at the edge of a poloidally diverted tokamak in the presence of externally imposed magnetic perturbations. More specifically, ad-hoc helical current sheets are introduced in order to mimic a hypothetical screening of the external resonant magnetic perturbations by the plasma. These current sheets, which suppress magnetic islands, are found to reduce the amount of splitting expected at the target, which suggests that screening effects should be observable experimentally. Multiple screening current sheets reinforce each other, i.e. less current relative to the case of only one current sheet is required to screen the perturbation.Comment: Accepted in the Proceedings of the 19th International Conference on Plasma Surface Interactions, to be published in Journal of Nuclear Materials. Version 2: minor formatting and text improvements, more results mentioned in the conclusion and abstrac

    Overview of the FTU results

    Get PDF
    Since the 2016 IAEA Fusion Energy Conference, FTU operations have been mainly devoted to experiments on runaway electrons and investigations into a tin liquid limiter; other experiments have involved studies of elongated plasmas and dust. The tearing mode onset in the high density regime has been studied by means of the linear resistive code MARS, and the highly collisional regimes have been investigated. New diagnostics, such as a runaway electron imaging spectroscopy system for in-flight runaway studies and a triple Cherenkov probe for the measurement of escaping electrons, have been successfully installed and tested, and new capabilities of the collective Thomson scattering and the laser induced breakdown spectroscopy diagnostics have been explored

    DTT - Divertor Tokamak Test facility: A testbed for DEMO

    Get PDF
    The effective treatment of the heat and power exhaust is a critical issue in the road map to the realization of the fusion energy. In order to provide possible, reliable, well assessed and on-time answers to DEMO, the Divertor Tokamak Test facility (DTT) has been conceived and projected to be carried out and operated within the European strategy in fusion technology. This paper, based on the invited plenary talk at the 31st virtual SOFT Conference 2020, provides an overview of the DTT scientific proposal, which is deeply illustrated in the 2019 DTT Interim Design Report
    • …
    corecore