17 research outputs found

    A bisphosphonate tweezers and clickable PEGylated PAMAM dendrons for the preparation of functional iron oxide nanoparticles displaying renal and hepatobiliary elimination

    No full text
    International audienceThe functionalization of superparamagnetic iron oxide nanoparticles (SPION) with PEGylated PAMAM dendrons through a bisphosphonate tweezers yielded 15 and 30 nm dendritic nano-objects stable in physiological media and showing both renal and hepatobiliary elimination

    Effect of the nanoparticle synthesis method on dendronized iron oxides as MRI contrast agents

    No full text
    Équipe 401 : NanomatĂ©riaux pour la vie et dĂ©veloppement durableInternational audienceAqueous suspensions of dendronized iron oxide nanoparticles (NPs) have been obtained after functionalization, with two types of dendrons, of NPs synthesized either by coprecipitation (leading to naked NPs in water) or by thermal decomposition (NPs in situ coated by oleic acid in an organic solvent). Different grafting strategies have been optimized depending on the NPs synthetic method. The size distribution, the colloidal stability in isoosmolar media, the surface complex nature as well as the preliminary biokinetic studies performed with optical imaging, and the contrast enhancement properties evaluated through in vitro and in vivo MRI experiments, have been compared as a function of the nature of both dendrons and NPs. All functionalized NPs displayed good colloidal stability in water, however the ones bearing a peripheral carboxylic acid function gave the best results in isoosmolar media. Whereas the grafting rates were similar, the nature of the surface complex depended on the NPs synthetic method. The in vitro contrast enhancement properties were better than commercial products, with a better performance of the NPs synthesized by coprecipitation. On the other hand, the NPs synthesized by thermal decomposition were more efficient in vivo. Furthermore, they both displayed good biodistribution with renal and hepatobiliary elimination pathways and no consistent RES uptake

    Ex Vivo and In Vivo Imaging and Biodistribution of Aptamers Targeting the Human Matrix MetalloProtease-9 in Melanomas

    No full text
    International audienceThe human Matrix MetalloProtease-9 (hMMP-9) is overexpressed in tumors where it promotes the release of cancer cells thus contributing to tumor metastasis. We raised aptamers against hMMP-9, which constitutes a validated marker of malignant tumors, in order to design probes for imaging tumors in human beings. A chemically modified RNA aptamer (F3B), fully resistant to nucleases was previously described. This compound was subsequently used for the preparation of F3B-Cy5, F3B-S-acetylmercaptoacetyltriglycine (MAG) and F3B-DOTA. The binding properties of these derivatives were determined by surface plasmon resonance and electrophoretic mobility shift assay. Optical fluorescence imaging confirmed the binding to hMMP-9 in A375 melanoma bearing mice. Quantitative biodistribution studies were performed at 30 min, 1h and 2 h post injection of 99mTc-MAG-aptamer and 111In-DOTA-F3B. 99mTc radiolabeled aptamer specifically detected hMMP-9 in A375 melanoma tumors but accumulation in digestive tract was very high. Following i.v. injection of 111In-DOTA-F3B, high level of radioactivity was observed in kidneys and bladder but digestive tract uptake was very limited. Tumor uptake was significantly (student t test, p<0.05) higher for 111In-DOTA-F3B with 2.0%ID/g than for the 111In-DOTA-control oligonucleotide (0.7%ID/g) with tumor to muscle ratio of 4.0. Such difference in tumor accumulation has been confirmed by ex vivo scintigraphic images performed at 1h post injection and by autoradiography, which revealed the overexpression of hMMP-9 in sections of human melanomas. These results demonstrate that F3B aptamer is of interest for detecting hMMP-9 in melanoma tumor

    Ex Vivo and In Vivo Imaging and Biodistribution of Aptamers Targeting the Human Matrix MetalloProtease-9 in Melanomas.

    No full text
    The human Matrix MetalloProtease-9 (hMMP-9) is overexpressed in tumors where it promotes the release of cancer cells thus contributing to tumor metastasis. We raised aptamers against hMMP-9, which constitutes a validated marker of malignant tumors, in order to design probes for imaging tumors in human beings. A chemically modified RNA aptamer (F3B), fully resistant to nucleases was previously described. This compound was subsequently used for the preparation of F3B-Cy5, F3B-S-acetylmercaptoacetyltriglycine (MAG) and F3B-DOTA. The binding properties of these derivatives were determined by surface plasmon resonance and electrophoretic mobility shift assay. Optical fluorescence imaging confirmed the binding to hMMP-9 in A375 melanoma bearing mice. Quantitative biodistribution studies were performed at 30 min, 1h and 2 h post injection of 99mTc-MAG-aptamer and 111In-DOTA-F3B. 99mTc radiolabeled aptamer specifically detected hMMP-9 in A375 melanoma tumors but accumulation in digestive tract was very high. Following i.v. injection of 111In-DOTA-F3B, high level of radioactivity was observed in kidneys and bladder but digestive tract uptake was very limited. Tumor uptake was significantly (student t test, p<0.05) higher for 111In-DOTA-F3B with 2.0%ID/g than for the 111In-DOTA-control oligonucleotide (0.7%ID/g) with tumor to muscle ratio of 4.0. Such difference in tumor accumulation has been confirmed by ex vivo scintigraphic images performed at 1h post injection and by autoradiography, which revealed the overexpression of hMMP-9 in sections of human melanomas. These results demonstrate that F3B aptamer is of interest for detecting hMMP-9 in melanoma tumor

    Radiolabeled dendritic probes as tools for high in vivo tumor targeting: application to melanoma

    No full text
    International audienceIn bioimaging, targeting allows refining the diagnosis by improving the sensitivity and especially the specificity for an earlier diagnosis. Two 111In-radiolabeled dendritic nanoprobes (DPs) (In-111-2, In-111-3) and their model counterparts (In-111-1, In-111-4) are designed and assessed for in vitro and in vivo tumor targeting efficiency in a murine melanoma models. Tumor uptake is correlated to dendrimer multivalency and reaches values as high as 12.7 +/- 1.6% ID g(-1) at 4 h post intravenous injection for In-111-3 vs. 1.5 +/- 0.5% ID g(-1) for the unfunctionalized DP, and over 11% ID g(-1) for any tumor weight whatsoever

    Small rigid platforms functionalization with quaternary ammonium: Targeting extracellular matrix of chondrosarcoma

    No full text
    International audienceThis work takes place in the “cartilage targeting strategy”, consisting in using the quaternary ammonium (QA) function as a vector to proteoglycans (PGs) of extracellular matrix (ECM). The objective was to demonstrate that QA could address gadolinium based small rigid platforms (SRP) to PG-rich tumors. SRP were functionalized with QA, radiolabeled with 111Indium and evaluated for biodistribution in vivo, respectively to non functionalized SRP, in two experimental models: (i) the HEMCSS human xenograft model; (ii) the Swarm rat chondrosarcoma (SRC) orthotopic model. The contribution of cellular uptake to tumoral accumulation of nano-objects was also determined from in vitro binding. In the SRC model expressing a highly and homogeneously distributed PG content, tumor accumulation and retention of SRP@QA were increased by 40% as compared to non-functionalized SRP. When considering the radiosensitizing potential of gadolinium based SRP, these results provide hopes for the radiobiological approach of highly resistant tumor such as chondrosarcoma

    Imaginer le “mĂ©morial musical”. Musiques et (re)transmissions des mĂ©moires des traites et des esclavages

    No full text
    Ce numĂ©ro analyse comment la mĂ©moire de l’esclavage est transformĂ©e et transfigurĂ©e par la crĂ©ation musicale. Cette nouvelle mĂ©moire constitue le “mĂ©morial musical”, un espace de (re)transmissions de la mĂ©moire des traites et des esclavages. This issue analyzes how the memory of slavery is transformed and transfigured by musical creation. This new memory constitutes the “musical memorial,” a space for (re)transmitting the memory of the slave trades and slaveries
    corecore