418 research outputs found

    Understanding fast macroscale fracture from microcrack post mortem patterns

    Get PDF
    Dynamic crack propagation drives catastrophic solid failures. In many amorphous brittle materials, sufficiently fast crack growth involves small-scale, high-frequency microcracking damage localized near the crack tip. The ultra-fast dynamics of microcrack nucleation, growth and coalescence is inaccessible experimentally and fast crack propagation was therefore studied only as a macroscale average. Here, we overcome this limitation in polymethylmethacrylate, the archetype of brittle amorphous materials: We reconstruct the complete spatio-temporal microcracking dynamics, with micrometer / nanosecond resolution, through post mortem analysis of the fracture surfaces. We find that all individual microcracks propagate at the same low, load-independent, velocity. Collectively, the main effect of microcracks is not to slow down fracture by increasing the energy required for crack propagation, as commonly believed, but on the contrary to boost the macroscale velocity through an acceleration factor selected on geometric grounds. Our results emphasize the key role of damage-related internal variables in the selection of macroscale fracture dynamics.Comment: 9 pages, 5 figures + supporting information (15 pages

    Scaling exponents for fracture surfaces in homogenous glass and glassy ceramics

    Get PDF
    We investigate the scaling properties of post-mortem fracture surfaces in silica glass and glassy ceramics. In both cases, the 2D height-height correlation function is found to obey Family-Viseck scaling properties, but with two sets of critical exponents, in particular a roughness exponent ζ≃0.75\zeta\simeq 0.75 in homogeneous glass and ζ≃0.4\zeta\simeq 0.4 in glassy ceramics. The ranges of length-scales over which these two scalings are observed are shown to be below and above the size of process zone respectively. A model derived from Linear Elastic Fracture Mechanics (LEFM) in the quasistatic approximation succeeds to reproduce the scaling exponents observed in glassy ceramics. The critical exponents observed in homogeneous glass are conjectured to reflect damage screening occurring for length-scales below the size of the process zone

    Experimental study of granular surface flows via a fast camera: a continuous description

    Get PDF
    Depth averaged conservation equations are written for granular surface flows. Their application to the study of steady surface flows in a rotating drum allows to find experimentally the constitutive relations needed to close these equations from measurements of the velocity profile in the flowing layer at the center of the drum and from the flowing layer thickness and the static/flowing boundary profiles. The velocity varies linearly with depth, with a gradient independent of both the flowing layer thickness and the static/flowing boundary local slope. The first two closure relations relating the flow rate and the momentum flux to the flowing layer thickness and the slope are then deduced. Measurements of the profile of the flowing layer thickness and the static/flowing boundary in the whole drum explicitly give the last relation concerning the force acting on the flowing layer. Finally, these closure relations are compared to existing continuous models of surface flows.Comment: 20 pages, 11 figures, submitted to Phys. FLuid

    Recognizing Graphs Close to Bipartite Graphs with an Application to Colouring Reconfiguration

    Get PDF
    We continue research into a well-studied family of problems that ask whether the vertices of a given graph can be partitioned into sets A and B, where A is an independent set and B induces a graph from some specified graph class G. We consider the case where G is the class of k-degenerate graphs. This problem is known to be polynomial-time solvable if k = 0 (recognition of bipartite graphs), but NP-complete if k = 1 (near-bipartite graphs) even for graphs of maximum degree 4. Yang and Yuan [DM, 2006] showed that the k = 1 case is polynomial-time solvable for graphs of maximum degree 3. This also follows from a result of Catlin and Lai [DM, 1995]. We study the general k ≥ 1 case for n-vertex graphs of maximum degree k + 2 We show how to find A and B in O(n) time for k = 1, and in O(n 2 ) time for k ≥ 2. Together, these results provide an algorithmic version of a result of Catlin [JCTB, 1979] and also provide an algorithmic version of a generalization of Brook’s Theorem, proved by Borodin, Kostochka and Toft [DM, 2000] and Matamala [JGT, 2007]. The results also enable us to solve an open problem of Feghali et al. [JGT, 2016]. For a given graph G and positive integer `, the vertex colouring reconfiguration graph of G has as its vertex set the set of `-colourings of G and contains an edge between each pair of colourings that differ on exactly on vertex. We complete the complexity classification of the problem of finding a path in the reconfiguration graph between two given `-colourings of a given graph of maximum degree k

    Diphasic non-local model for granular surface flows

    Full text link
    Considering recent results revealing the existence of multi-scale rigid clusters of grains embedded in granular surface flows, i.e. flows down an erodible bed, we describe here the surface flows rheology through a non-local constitutive law. The predictions of the resulting model are compared quantitatively to experimental results: The model succeeds to account for the counter-intuitive shape of the velocity profile observed in experiments, i.e. a velocity profile decreasing exponentially with depth in the static phase and remaining linear in the flowing layer with a velocity gradient independent of both the flowing layer thickness, the angle between the flow and the horizontal, and the coefficient of restitution of the grains. Moreover, the scalings observed in rotating drums are recovered, at least for small rotating speed.Comment: 7 pages, submitted to Europhys. Let

    Block to granular-like transition in dense bubble flows

    Full text link
    We have experimentally investigated 2-dimensional dense bubble flows underneath inclined planes. Velocity profiles and velocity fluctuations have been measured. A broad second-order phase transition between two dynamical regimes is observed as a function of the tilt angle θ\theta. For low θ\theta values, a block motion is observed. For high θ\theta values, the velocity profile becomes curved and a shear velocity gradient appears in the flow.Comment: Europhys. Lett. (2003) in pres

    Oncogenic conversion of the thyroid hormone receptor by altered nuclear transport

    Get PDF
    Nuclear receptors (NRs) are transcription factors whose activity is modulated by ligand binding. These receptors are at the core of complex signaling pathways and act as integrators of many cellular signals. In the last decade our understanding of NRs has greatly evolved. In particular, regulation of NR subcellular dynamics has emerged as central to their activity. Research on the subcellular distribution of the thyroid hormone receptor (TR) has revealed new dimensions in the complexity of NR regulation, and points to the possibility that NR mislocalization plays a key role in oncogenesis. For many years, TR was thought to reside exclusively in the nucleus. It is now known that TR is a dynamic protein that shuttles between the nucleus and cytoplasm. TR is localized to the nucleus in a phosphorylated form, suggesting that compartment-specific phosphorylation mediates cross-talk between multiple cell signaling pathways. The oncoprotein v-ErbA, a viral-derived dominant negative variant of TR is actively exported to the cytoplasm by the CRM1 export receptor. Strikingly, the oncoprotein causes mislocalization of cellular TR and some of its coactivators by direct interaction. Here, we offer some perspectives on the role of subcellular trafficking in the oncogenic conversion of TR, and propose a new model for oncoprotein dominant negative activity

    Some aspects of electrical conduction in granular systems of various dimensions

    Get PDF
    We report on measurements of the electrical conductivity in both a 2D triangular lattice of metallic beads and in a chain of beads. The voltage/current characteristics are qualitatively similar in both experiments. At low applied current, the voltage is found to increase logarithmically in a good agreement with a model of widely distributed resistances in series. At high enough current, the voltage saturates due to the local welding of microcontacts between beads. The frequency dependence of the saturation voltage gives an estimate of the size of these welded microcontacts. The DC value of the saturation voltage (~ 0.4 V per contact) gives an indirect measure of the number of welded contact carrying the current within the 2D lattice. Also, a new measurement technique provides a map of the current paths within the 2D lattice of beads. For an isotropic compression of the 2D granular medium, the current paths are localized in few discrete linear paths. This quasi-onedimensional nature of the electrical conductivity thus explains the similarity between the characteristics in the 1D and 2D systems.Comment: To be published in The European Physical Journal

    Registers of the Swedish total population and their use in medical research

    Get PDF
    The primary aim of the Swedish national population registration system is to obtain data that (1) reflect the composition, relationship and identities of the Swedish population and (2) can be used as the basis for correct decisions and measures by government and other regulatory authorities. For this purpose, Sweden has established two population registers: (1) The Population Register, maintained by the Swedish National Tax Agency ("Folkbokforingsregistret"); and (2) The Total Population Register (TPR) maintained by the government agency Statistics Sweden ("Registret over totalbefolkningen"). The registers contain data on life events including birth, death, name change, marital status, family relationships and migration within Sweden as well as to and from other countries. Updates are transmitted daily from the Tax Agency to the TPR. In this paper we describe the two population registers and analyse their strengths and weaknesses. Virtually 100 % of births and deaths, 95 % of immigrations and 91 % of emigrations are reported to the Population Registers within 30 days and with a higher proportion over time. The over-coverage of the TPR, which is primarily due to underreported emigration data, has been estimated at up to 0.5 % of the Swedish population. Through the personal identity number, assigned to all residents staying at least 1 year in Sweden, data from the TPR can be used for medical research purposes, including family design studies since each individual can be linked to his or her parents, siblings and offspring. The TPR also allows for identification of general population controls, participants in cohort studies, as well as calculation of follow-up time.NonePublishe
    • …
    corecore