7 research outputs found
Probing quantum and classical turbulence analogy through global bifurcations in a von K\'arm\'an liquid Helium experiment
We report measurements of the dissipation in the Superfluid Helium high
REynold number von Karman flow (SHREK) experiment for different forcing
conditions, through a regime of global hysteretic bifurcation. Our
macroscopical measurements indicate no noticeable difference between the
classical fluid and the superfluid regimes, thereby providing evidence of the
same dissipative anomaly and response to asymmetry in fluid and superfluid
regime. %In the latter case, A detailed study of the variations of the
hysteretic cycle with Reynolds number supports the idea that (i) the stability
of the bifurcated states of classical turbulence in this closed flow is partly
governed by the dissipative scales and (ii) the normal and the superfluid
component at these temperatures (1.6K) are locked down to the dissipative
length scale.Comment: 5 pages, 5 figure
TSF experiment for comparison of high Reynolds number turbulence in both HeI and HeII: First results
International audienceTSF experiment for comparison of high Reynolds number turbulence in both HeI and HeII: First result
Cryogenic turbulence test facilities at CEA/SBT
International audienceRecently, CEA Grenoble SBT has designed, built and tested three liquid helium facilities dedicated to turbulence studies. All these experiments can operate either in HeI or HeII within the same campaign. The three facilities utilize moving parts inside liquid helium. The SHREK experiment is a von Kármán swirling flow between 0.72 m diameter counterrotating disks equipped with blades. The HeJet facility is used to produce a liquid helium free jet inside a 0.200 m I.D., 0.47 m length stainless steel cylindrical testing chamber. The OGRES experiment consists of an optical cryostat equipped with a particle injection device and an oscillating grid. We detail specific techniques employed to accommodate these stringent specifications. Solutions for operating these facilities without bubbles nor boiling/cavitation are described. Control parameters as well as Reynolds number and temperature ranges are given
Local velocity measurements in the Shrek experiment at high reynolds number
International audienceWe report preliminary results obtained using new local velocity probes in the Superfluid Helium high REynold number von Kármán flow (SHREK) experiment for different forcing conditions. The presentation will focus on the validation of the signals obtained from a hot-wire and a total head pressure tube in both normal and superfluid phases of liquid helium
Superfluid high REynolds von Kármán experiment
International audienceThe Superfluid High REynolds von Kármán experiment facility exploits the capacities of a high cooling power refrigerator (400 W at 1.8 K) for a large dimension von Kármán flow (inner diameter 0.78 m), which can work with gaseous or subcooled liquid (He-I or He-II) from room temperature down to 1.6 K. The flow is produced between two counter-rotating or co-rotating disks. The large size of the experiment allows exploration of ultra high Reynolds numbers based on Taylor microscale and rms velocity [S. B. Pope, Turbulent Flows (Cambridge University Press, 2000)] (R λ > 10000) or resolution of the dissipative scale for lower Re. This article presents the design and first performance of this apparatus. Measurements carried out in the first runs of the facility address the global flow behavior: calorimetric measurement of the dissipation, torque and velocity measurements on the two turbines. Moreover first local measurements (micro-Pitot, hot wire,. . .) have been installed and are presented. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4897542
Experimental Signature of Quantum Turbulence in Velocity Spectra?
International audienceVelocity measurements in turbulent superfluid helium between co-rotating propellers are reported. The parameters are chosen such that the flow is fully turbulent, and its dissipative scales are partly resolved by the velocity sensors. This allows for the first experimental comparison of spectra in quantum versus classical turbulence where dissipative scales are resolved. In some specific conditions, differences are observed, with an excess of energy at small scales in the quantum case compared to the classical one. This difference is consistent with the prediction of a pileup of superfluid kinetic energy at the bottom of the inertial cascade of turbulence due to a specific dissipation mechanism