164 research outputs found

    The Dependence of Cyberspace

    Get PDF

    Infrared photochemistry of ethylene clusters

    Get PDF
    Infrared irradiation of ethylene clusters formed in supersonic molecular beams, using a low power cw CO2 laser, results in the photodissociation of a large fraction of the van der Waals molecules. Under such conditions, infrared absorption intensity exhibits first-order power dependence and is readily detected as loss in molecular beam intensity. Intramolecular energy transfer rates, determined by measuring spectral linewidths, are shown to vary with the vibrational mode initially excited. Ethylene clusters containing one quantum of vibrational energy corresponding to the nun7 fundamental in the monomer (949 cm^–1) have a vibrationally predissociative lifetime of 0.33 psec. In comparison, the relaxation rate of ethylene-d4 clusters with one quantum of excitation corresponding to the nu12 (1078 cm^–1) mode of C2D4 is 0.7 psec

    Identification and Quantitative Measurements of Chemical Species by Mass Spectrometry

    Get PDF
    The development of a miniature gas chromatograph/mass spectrometer system for the measurement of chemical species of interest to combustion is described. The completed system is a fully-contained, automated instrument consisting of a sampling inlet, a small-scale gas chromatograph, a miniature, quadrupole mass spectrometer, vacuum pumps, and software. A pair of computer-driven valves controls the gas sampling and introduction to the chromatographic column. The column has a stainless steel exterior and a silica interior, and contains an adsorbent of that is used to separate organic species. The detection system is based on a quadrupole mass spectrometer consisting of a micropole array, electrometer, and a computer interface. The vacuum system has two miniature pumps to maintain the low pressure needed for the mass spectrometer. A laptop computer uses custom software to control the entire system and collect the data. In a laboratory demonstration, the system separated calibration mixtures containing 1000 ppm of alkanes and alkenes

    Wavelength-Agile External-Cavity Diode Laser for DWDM

    Get PDF
    A prototype external-cavity diode laser (ECDL) has been developed for communication systems utilizing dense wavelength- division multiplexing (DWDM). This ECDL is an updated version of the ECDL reported in Wavelength-Agile External- Cavity Diode Laser (LEW-17090), NASA Tech Briefs, Vol. 25, No. 11 (November 2001), page 14a. To recapitulate: The wavelength-agile ECDL combines the stability of an external-cavity laser with the wavelength agility of a diode laser. Wavelength is modulated by modulating the injection current of the diode-laser gain element. The external cavity is a Littman-Metcalf resonator, in which the zeroth-order output from a diffraction grating is used as the laser output and the first-order-diffracted light is retro-reflected by a cavity feedback mirror, which establishes one end of the resonator. The other end of the resonator is the output surface of a Fabry-Perot resonator that constitutes the diode-laser gain element. Wavelength is selected by choosing the angle of the diffracted return beam, as determined by position of the feedback mirror. The present wavelength-agile ECDL is distinguished by design details that enable coverage of all 60 channels, separated by 100-GHz frequency intervals, that are specified in DWDM standards

    Combustion Species Sensor for Scramjet Flight Instrumentation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76361/1/AIAA-2005-3574-730.pd

    An Efficient and Compact Difference-Frequency-Generation Spectrometer and Its Application to 12CH3D/12CH4 Isotope Ratio Measurements

    Get PDF
    We have developed an efficient and compact 3.4 μm difference-frequency-generation spectrometer using a 1.55 μm distributed feedback (DFB) laser diode, a 1.06 μm DFB laser diode, and a ridge-waveguide periodically poled lithium niobate. It is continuously tunable in the 30 cm−1 span and is applied to 12CH3D/12CH4 isotope ratio measurements. The suitable pair of 12CH3D ν4 pP(7,6) and 12CH4 ν 2+ν4 R(6) F1(1) lines enabled us to determine their isotope ratio with a precision repeatability of 0.8‰ using a sample and a working standard of pure methane with an effective signal averaging time of 100 ms
    corecore