595 research outputs found

    A Lorentzian Gromov-Hausdoff notion of distance

    Full text link
    This paper is the first of three in which I study the moduli space of isometry classes of (compact) globally hyperbolic spacetimes (with boundary). I introduce a notion of Gromov-Hausdorff distance which makes this moduli space into a metric space. Further properties of this metric space are studied in the next papers. The importance of the work can be situated in fields such as cosmology, quantum gravity and - for the mathematicians - global Lorentzian geometry.Comment: 20 pages, 0 figures, submitted to Classical and quantum gravity, seriously improved presentatio

    Short-distance regularity of Green's function and UV divergences in entanglement entropy

    Get PDF
    Reformulating our recent result (arXiv:1007.1246 [hep-th]) in coordinate space we point out that no matter how regular is short-distance behavior of Green's function the entanglement entropy in the corresponding quantum field theory is always UV divergent. In particular, we discuss a recent example by Padmanabhan (arXiv:1007.5066 [gr-qc]) of a regular Green's function and show that provided this function arises in a field theory the entanglement entropy in this theory is UV divergent and calculate the leading divergent term.Comment: LaTeX, 6 page

    Discrete Time from Quantum Physics

    Full text link
    't Hooft has recently developed a discretisation of (2+1) gravity which has a multiple-valued Hamiltonian and which therefore admits quantum time evolution only in discrete steps. In this paper, we describe several models in the continuum with single-valued equations of motion in classical physics, but with multiple-valued Hamiltonians. Their time displacements in quantum theory are therefore obliged to be discrete. Classical models on smooth spatial manifolds are also constructed with the property that spatial displacements can be implemented only in discrete steps in quantum theory. All these models show that quantization can profoundly affect classical topology.Comment: 21 pages with 2 figures, SU-4240-579 (figures corrected in this version

    The Semiclassical Limit of Loop Quantum Cosmology

    Get PDF
    The continuum and semiclassical limits of isotropic, spatially flat loop quantum cosmology are discussed, with an emphasis on the role played by the Barbero-Immirzi parameter \gamma in controlling space-time discreteness. In this way, standard quantum cosmology is shown to be the simultaneous limit \gamma \to 0, j \to \infty of loop quantum cosmology. Here, j is a label of the volume eigenvalues, and the simultaneous limit is technically the same as the classical limit \hbar \to 0, l \to \infty of angular momentum in quantum mechanics. Possible lessons for semiclassical states at the dynamical level in the full theory of quantum geometry are mentioned.Comment: 10 page

    Remarks on Thermal Strings outside Black Holes

    Full text link
    We discuss the semiclassical approximation to the level density of (super) strings propagating in non-compact coset manifolds G/HG/H. We show that the WKB ansatz agrees with heuristic red-shift arguments with respect to the ``exact" sigma model metric, up to some deviations from minimal coupling, parametrized by the dilaton. This approximation is used to study thermal ensembles of free strings in black holes, with the ``brick wall" regularization of `t Hooft. In two dimensions the entropy diverges logarithmically with the horizon thickness, and a local Hagedorn transition occurs in higher dimensional models. We also observe that supersymmetry improves the regularity of strings at the horizon.Comment: 13 pages, PUPT-94-147

    The graviton vacuum as a distributional state in kinematic Loop Quantum Gravity

    Full text link
    The quantum behaviour of weak gravitational fields admits an adequate, albeit approximate, description by those graviton states in which the expectation values and fluctuations of the linearised gravitational field are small. Such states must approximate corresponding states in full quantum gravity. We analyse the nature of this approximation for the graviton vacuum state in the context of kinematical Loop Quantum Gravity (LQG) wherein the constraints are ignored. We identify the graviton vacuum state with kinematically non-normalizable, distributional states in LQG by demanding that relations between linearised operator actions on the former are mirrored by those of their non-linear counterparts on the latter. We define a semi- norm on the space of kinematical distributions and show that the identification is approximate upto distributions which are small in this semi-norm. We argue that our candidate states are annihilated by the linearised constraints (expressed as operators in the full theory) to leading order in the parameter characterising the approximation. This suggests the possibility, in a scheme such as ours, of solving the full constraints order by order in this parameter. The main drawback of our considerations is that they depend on certain auxilliary constructions which, though mathematically well defined, do not arise from physical insight. Our work is an attempt to implement an earlier proposal of Iwasaki and Rovelli.Comment: 44 pages, no figure

    The Value of Singularities

    Get PDF
    We point out that spacetime singularities play a useful role in gravitational theories by eliminating unphysical solutions. In particular, we argue that any modification of general relativity which is completely nonsingular cannot have a stable ground state. This argument applies both to classical extensions of general relativity, and to candidate quantum theories of gravity.Comment: 5 pages, no figures; a few clarifying comments adde

    Entanglement entropy in gauge theories and the holographic principle for electric strings

    Full text link
    We consider quantum entanglement between gauge fields in some region of space A and its complement B. It is argued that the Hilbert space of physical states of gauge theories cannot be decomposed into a direct product of Hilbert spaces of states localized in A and B. The reason is that elementary excitations in gauge theories - electric strings - are associated with closed loops rather than points in space, and there are closed loops which belong both to A and B. Direct product structure and hence the reduction procedure with respect to the fields in B can only be defined if the Hilbert space of physical states is extended by including the states of electric strings which can open on the boundary of A. The positions of string endpoints on this boundary are the additional degrees of freedom which also contribute to the entanglement entropy. We explicitly demonstrate this for the three-dimensional Z2 lattice gauge theory both numerically and using a simple trial ground state wave function. The entanglement entropy appears to be saturated almost completely by the entropy of string endpoints, thus reminding of a ``holographic principle'' in quantum gravity and AdS/CFT correspondence.Comment: 6 pages RevTeX, 5 figure

    On alternative approaches to Lorentz violation in loop quantum gravity inspired models

    Full text link
    Recent claims point out that possible violations of Lorentz symmetry appearing in some semiclassical models of extended matter dynamics motivated by loop quantum gravity can be removed by a different choice of canonically conjugated variables. In this note we show that such alternative is inconsistent with the choice of variables in the underlying quantum theory together with the semiclassical approximation, as long as the correspondence principle is maintained. A consistent choice will violate standard Lorentz invariance. Thus, to preserve a relativity principle in this framework, the linear realization of Lorentz symmetry should be extended or superseded.Comment: 4 pages, revtex4, no figures, references adde

    Event horizon - Magnifying glass for Planck length physics

    Get PDF
    An attempt is made to describe the `thermodynamics' of semiclassical spacetime without specifying the detailed `molecular structure' of the quantum spacetime, using the known properties of blackholes. I give detailed arguments, essentially based on the behaviour of quantum systems near the event horizon, which suggest that event horizon acts as a magnifying glass to probe Planck length physics even in those contexts in which the spacetime curvature is arbitrarily low. The quantum state describing a blackhole, in any microscopic description of spacetime, has to possess certain universal form of density of states which can be ascertained from general considerations. Since a blackhole can be formed from the collapse of any physical system with a low energy Hamiltonian H, it is suggested that when such a system collapses to form a blackhole, it should be described by a modified Hamiltonian of the form Hmod2=A2ln(1+H2/A2)H^2_{\rm mod} =A^2 \ln (1+ H^2/A^2) where A2EP2A^2 \propto E_P^2.I also show that it is possible to construct several physical systems which have the blackhole density of states and hence will be indistinguishable from a blackhole as far as thermodynamic interactions are concerned. In particular, blackholes can be thought of as one-particle excitations of a class of {\it nonlocal} field theories with the thermodynamics of blackholes arising essentially from the asymptotic form of the dispersion relation satisfied by these excitations. These field theoretic models have correlation functions with a universal short distance behaviour, which translates into the generic behaviour of semiclassical blackholes. Several implications of this paradigm are discussed
    corecore