667 research outputs found

    High Resolution TEM Characterisation of Hydrogen Peroxide Treated Tooth Structures

    Get PDF
    Objective: Previous studies reported that bleaching agents are capable of altering the outer enamel or exposed dentine surfaces. In this study, transmission electron microscopy (TEM) characterisation in combination with energy dispersive x-ray spectroscopy (EDS) elemental mapping was performed to investigate the effect of hydrogen peroxide (HP) on the sub-surface of tooth structures. Materials and Methods: Bovine incisors (n=6) were assigned to three groups for treatments: 30% H2 O2 pH 3, 30% H2 O2 pH 7 and 1M sodium hydroxide (NaOH) for 16 hours. Samples were exposed to direct treatment with agents to allow easy access of the agents and uniform treatment across the entire sample sub-surfaces. Specimens were immersed in Karnovsky’s fixative for three days, embedded in epoxy and polished. Using focussed ion beam (FIB), samples were milled ~50-100 µm below the treated polished surface to feature the ultra-fine structures for TEM analysis. Results: Enamel rods, inter-rods and crystalline structures within rods were discerned for sound and H2 O2 treated enamel. No structural difference in the mineral dense peritubular region or fibrous protein rich inter-tubular dentine was observed after acidic or neutral H2 O2 treatment. A complete loss in the structural integrity of enamel rod was observed after NaOH treatment for 16 hours without having any impact on dentine structure. Conclusions: TEM analysis produced high quality sub-surface images of tooth structures and revealed no deleterious effect on the structural integrity of the sub-surface enamel or dentine after direct bleaching with hydrogen peroxide

    A note on the spectral analysis of matrix sequences via GLT momentary symbols: from all-at-once solution of parabolic problems to distributed fractional order matrices

    Get PDF
    The first focus of this paper is the characterization of the spectrum and the singular values of the coefficient matrix stemming from the discretization of a parabolic diffusion problem using a space-time grid and secondly from the approximation of distributed-order fractional equations. For this purpose we use the classical GLT theory and the new concept of GLT momentary symbols. The first permits us to describe the singular value or eigenvalue asymptotic distribution of the sequence of the coefficient matrices. The latter permits us to derive a function that describes the singular value or eigenvalue distribution of the matrix of the sequence, even for small matrix sizes, but under given assumptions. The paper is concluded with a list of open problems, including the use of our machinery in the study of iteration matrices, especially those concerning multigrid-type techniques

    Massively parallel density functional calculations for thousands of atoms: KKRnano

    Get PDF
    Applications of existing precise electronic-structure methods based on density functional theory are typically limited to the treatment of about 1000 inequivalent atoms, which leaves unresolved many open questions in material science, e. g., on complex defects, interfaces, dislocations, and nanostructures. KKRnano is a new massively parallel linear scaling all-electron density functional algorithm in the framework of the Korringa-Kohn-Rostoker (KKR) Green's-function method. We conceptualized, developed, and optimized KKRnano for large-scale applications of many thousands of atoms without compromising on the precision of a full-potential all-electron method, i.e., it is a method without any shape approximation of the charge density or potential. A key element of the new method is the iterative solution of the sparse linear Dyson equation, which we parallelized atom by atom, across energy points in the complex plane and for each spin degree of freedom using the message passing interface standard, followed by a lower-level OpenMP parallelization. This hybrid four-level parallelization allows for an efficient use of up to 100 000 processors on the latest generation of supercomputers. The iterative solution of the Dyson equation is significantly accelerated, employing preconditioning techniques making use of coarse-graining principles expressed in a block-circulant preconditioner. In this paper, we will describe the important elements of this new algorithm, focusing on the parallelization and preconditioning and showing scaling results for NiPd alloys up to 8192 atoms and 65 536 processors. At the end, we present an order-N algorithm for large-scale simulations of metallic systems, making use of the nearsighted principle of the KKR Green's-function approach by introducing a truncation of the electron scattering to a local cluster of atoms, the size of which is determined by the requested accuracy. By exploiting this algorithm, we show linear scaling calculations of more than 16 000 NiPd atoms

    Conservative surgical treatment with fertility preservation in a young adult with NTRK rearranged spindle cell neoplasm of the uterine cervix

    Full text link
    In depth molecular studies are constantly expanding our understanding and refining the classification of gynecological neoplasms. NTRK rearranged spindle cell neoplasms of the lower genital tract are an emerging entity, of particular interest due to possible targeted treatment with selective kinase inhibitors. Nonetheless, surgery remains the initial treatment of choice. We present the case of a 24-year-old patient suffering from a NTRK rearranged spindle cell neoplasm of the uterine cervix which was treated with a fertility preserving conservative surgical approach

    Silicon-organic hybrid electro-optical devices

    Get PDF
    Organic materials combined with strongly guiding silicon waveguides open the route to highly efficient electro-optical devices. Modulators based on the so-called silicon-organic hybrid (SOH) platform have only recently shown frequency responses up to 100 GHz, high-speed operation beyond 112 Gbit/s with fJ/bit power consumption. In this paper, we review the SOH platform and discuss important devices such as Mach-Zehnder and IQ-modulators based on the linear electro-optic effect. We further show liquid-crystal phase-shifters with a voltage-length product as low as V pi L = 0.06 V.mm and sub-mu W power consumption as required for slow optical switching or tuning optical filters and devices

    Novel classical ground state of a many body system in arbitrary dimensions

    Full text link
    The classical ground state of a D- dimensional many body system with two and three body interactions is studied as a function of the strength of the three body interaction. We prove exactly that beyond a critical strength of the three body interaction, the classical ground state of the system is one in which all the particles are on a line. The positions of the particles in this string configuration are uniquely determined by the zeros of the Hermite polynomials.Comment: 4 pages, RevTeX, no figure; version to appear in Physical Review Letter

    Classical Many-particle Clusters in Two Dimensions

    Full text link
    We report on a study of a classical, finite system of confined particles in two dimensions with a two-body repulsive interaction. We first develop a simple analytical method to obtain equilibrium configurations and energies for few particles. When the confinement is harmonic, we prove that the first transition from a single shell occurs when the number of particles changes from five to six. The shell structure in the case of an arbitrary number of particles is shown to be independent of the strength of the interaction but dependent only on its functional form. It is also independent of the magnetic field strength when included. We further study the effect of the functional form of the confinement potential on the shell structure. Finally we report some interesting results when a three-body interaction is included, albeit in a particular model.Comment: Minor corrections, a few references added. To appear in J. Phys: Condensed Matte

    Integrating Data from GRACE and Other Observing Systems for Hydrological Research and Applications

    Get PDF
    The Gravity Recovery and Climate Experiment (GRACE) mission provides a unique view of water cycle dynamics, enabling the only space based observations of water on and beneath the land surface that are not limited by depth. GRACE data are immediately useful for large scale applications such as ice sheet ablation monitoring, but they are even more valuable when combined with other types of observations, either directly or within a data assimilation system. Here we describe recent results of hydrological research and applications projects enabled by GRACE. These include the following: 1) global monitoring of interannual variability of terrestrial water storage and groundwater; 2) water balance estimates of evapotranspiration over several large river basins; 3) NASA's Energy and Water Cycle Study (NEWS) state of the global water budget project; 4) drought indicator products now being incorporated into the U.S. Drought Monitor; 5) GRACE data assimilation over several regions

    Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) integration

    Get PDF
    Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration combines organic clectro-optic materials with silicon photonic and plasmonic waveguides, The concept enables fast and power-efficient modulators that support advanced modulation formats such as QPSK and 16QAM
    corecore