296 research outputs found

    Polymer-Encapsulated Halide Perovskite Color Converters

    Get PDF
    An easy process to fabricate highly luminescent and color-pure polymer-encapsulated halide perovskite color converters is reported. Methylammonium lead bromide (MAPbBr3) with an additive of amantadine hydrochloride is prepared by dry mechanochemical synthesis together with an encapsulating polymer. (In this report, poly(methyl methacrylate), polystyrene, and polyethylene oxide are investigated.) The composite material is heated and pressed into a thin disk exhibiting strong luminescent properties. By adjusting the weight percentage of the perovskite in the polymer, the disk can be opaque or transmissive. The disks are stable in air for over 2 months. By inserting a secondary emitter, white light can be obtained by illuminating it with a blue light source

    Highly luminescent perovskite–aluminum oxide composites

    Get PDF
    In this communication we report on the preparation of CH3NH3PbBr3 perovskite/Al2O3 nanoparticle composites in a thin film configuration and demonstrate their high photoluminescence quantum yield. The composite material is solution-processed at low temperature, using stable alumina nanoparticle dispersions. There is a large influence of the alumina nanoparticle concentration on the perovskite morphology and on its photoluminescence

    Perovskite solar cells prepared by flash evaporation

    Get PDF
    A simple vacuum deposition method for the preparation of high quality hybrid organic-inorganic methylammonium lead iodide perovskite thin films is reported. When sandwiched in between organic charge transporting layers, such films lead to solar cells with a power conversion efficiency of 12.2%

    Advances in Perovskite Optoelectronics: Bridging the Gap Between Laboratory and Fabrication

    Get PDF
    In 2019, hybrid halide perovskites celebrated their 10th anniversary as a "wonder material" for optoelectronic applications. Although the parent perovskite structures were elucidated in the late 19th century, the seminal work by Miyasaka et al. exploiting organic‐inorganic hybrid halide perovskites sensitizers for visible‐light conversion in solar cells marked the revisit of these materials and has proven to be a game‐changer in this field. Extensive investigations were undertaken to develop new materials (all inorganic and organic‐inorganic hybrids, in the form of films or alternate morphologies) and deposition techniques, explore interfaces and in‐depth characterization, while engineering devices and testing methods for optimum results. Within a short time span, the power conversion efficiency (PCE) of single‐junction and tandem perovskite solar cells (PSCs) have exceeded 25% and 29% respectively; thus challenging the dominance of silicon solar cells. Building‐integrated photovoltaics (BIPV) is another hot topic in PSCs, where perovskite solar cells are designed to be semi‐transparent for deployment in residential or office building facades. Along with the success in photovoltaics, halide perovskites have also made their impact in light emission, lasing, imaging, spintronics, memristors, and photocatalysis. However, key challenges still lie ahead, particularly on the commercialization of perovskite devices. Poor material and device stability under operational conditions and the lack of reproducibility and scalability have remained problematic; whereas the search for suitable lead‐free perovskites continues

    Making by Grinding: Mechanochemistry Boosts the Development of Halide Perovskites and Other Multinary Metal Halides

    Get PDF
    Mechanochemical synthesis has recently emerged as a promising route for the synthesis of functional lead halide perovskites as well as other (lead‐free) metal halides. Mechanochemical synthesis presents several advantages with regards to more commonly used solution‐based processes such as an inherent lower toxicity by avoiding organic solvents and a finer control over stoichiometry of the final products. The ease of implementation, either through the use of a simple mortar and pestle or with an electrically powered ball‐mill, and low amount of side products make mechanochemical synthesis appealing for upscaling the production of halide perovskites. Due to the defect tolerance of lead halide perovskites, they are ideally suited to be prepared by this solvent‐free method. However, the implementation of these semiconductors in high‐efficiency optoelectronic devices requires the transformation of synthesized powder into smooth thin films where still some hurdles remain to be cleared

    Degradation Mechanisms in Organic Lead Halide Perovskite Light‐Emitting Diodes

    Get PDF
    Organic-inorganic metal halide perovskites have attracted significant attention for low‐cost, high‐efficiency, color‐pure light‐emitting applications. However, as seen in many reports so‐far, perovskite light‐emitting diodes (PeLED) suffer from poor operational lifetime, limiting their practical use. The underlying degradation mechanism is a topic of crucial importance. Here, the degradation mechanisms of methylammonium lead bromide based PeLED are investigated. When the PeLED is electrically biased, there is an initial raise in the luminance followed by a rapid reduction in luminance and current density. Microscopic studies reveal the formation of micrometer‐sized spots that are photoluminescent but not electroluminescent. It is demonstrated that this degradation is due to the formation of gaseous compounds that leads to local delamination of the cathode, thereby reducing the electroluminescence. When the degraded cathode is substituted with a fresh cathode, the initial luminance is largely recovered. By further analyzing the buried interface of the cathode, the formation of lead bromide and gaseous methylamine due to the degradation of the perovskite layer are revealed. These insights will help to further improve the lifetime of PeLEDs. As an example, it is shown that substituting methylammonium cations by cesium leads to longer lifetimes

    Air stable hybrid organic-inorganic light emitting diodes uzing ZnO as the cathode

    Get PDF
    An air stable hybrid organic-inorganic light emitting device is presented. This architecture makes use of metal oxides as charge injecting materials into the light emitting polymer, avoiding the use of air sensitive cathodes commonly employed in organic light emitting diode manufacturing. We report the application of zinc oxide as a cathode in an organic light emitting device. This electroluminescent device shows high brightness levels reaching 6500 cd/m2 at voltages as low as 8 V. Compared to a conventional device using low workfunction metal cathodes, our device shows a lower turn-on voltage and it can operate in air

    Impedance of space-charge-limited currents in organic light-emitting diodes with double injection and strong recombination.

    Get PDF
    The impedance model for a one-carrier space-charge-limited (SCL) current has been applied to explain some experimental features of double carrier organic light-emitting diodes. We report the analytical model of impedance of bipolar drift transport in SCL regime in the limit of infinite recombination. In this limit the ac impedance function is identical to that of a single carrier device, with a transit time modified by the sum of mobilities for electrons and holes, Îźn+Îźp. The static capacitance C(ω→0) is a factor of ž lower than the geometric capacitance, as observed for single carrier devices, but it is shifted to higher frequencies. It follows that impedance measurements in the dual-carrier organic diodes with strong recombination provide the combination of Îźn+Îźp. For the mobilities of the different carriers to be determined separately, additional information is [email protected]

    Single-Source Vacuum Deposition of Mechanosynthesized Inorganic Halide Perovskites

    Get PDF
    Fully inorganic cesium lead halide perovskite thin films were prepared by an easy, fast and dry process based on single-source vacuum deposition. We investigated the structural and optical characteristics of the so-formed films as a function of chemical composition (chloride, bromide and iodide films were formed), post-deposition thermal annealing, as well as previous mechanosynthesis of perovskite powders. We found out that the CsPbX3 perovskite was preferentially formed for the smaller halides and favored by previous ball-milling of CsX and PbX2 precursors. When bigger halides were used and/or CsX and PbX2 precursors were simply mixed without previous mechanosynthesis, PbX2-rich compounds such as CsPb2X5 were preferentially formed in the thin films

    Low Temperature, Vacuum-Processed Bismuth Triiodide Solar Cells with Organic Small-Molecule Hole Transport Bilayer

    Get PDF
    Herein, the preparation of fully vacuum-processed bismuth triiodide solar cells with low annealing temperature is reported. Planar n-i-p devices are prepared using a thin compact SnO2 layer as the electron extraction layer and an electron blocking/hole extraction bilayer consisting of an intrinsic and doped organic hole-transport molecule. Using this configuration, herein, higher fill-factors and overall power conversion efficiencies than with conventional solution-processed hole transport materials are achieved
    • …
    corecore