12 research outputs found

    Integrating community pharmacy into community based anti-retroviral therapy program: A pilot implementation in Abuja, Nigeria

    Get PDF
    Background The landscape of Human Immunodeficiency Virus (HIV) epidemic control is shifting with the United Nations Programme on HIV/AIDS (UNAIDS) 90-90-90 benchmarks for epidemic control. Community-based Antiretroviral Therapy (CART) models have improved treatment uptake and demonstrated good clinical outcomes. We assessed the feasibility of integrating community pharmacy as a task shift structure for differentiated community ART in Abuja-Nigeria. Methods Stable patients on first line ART regimens from public health facilities were referred to community pharmacies in different locations within the Federal Capital Territory, Abuja for prescription refills and treatment maintenance. Bio-demographic and clinical data were collected from February 25, 2016 to May 31st, 2017 and descriptive statistics analysis applied. The outcomes of measure were prescription refill and patient retention in care at the community pharmacy. Results Almost 10% of stable patients on treatment were successfully devolved from eight health facilities to ten community pharmacies. Median age of the participants was 35 years [interquartile range (IQR); 30, 41] with married women in the majority. Prescription refill was 100% and almost all the participants (99.3%) were retained in care after they were devolved to the community pharmacies. Only one participant was lost-to-follow-up as a result of death. Conclusion Excellent prescription refill and high retention in care with very low loss-to-follow-up were associated with the community pharmacy model. The use of community pharmacy for community ART is feasible in Nigeria. We recommend the scale up of the model in all the 36 states of Nigeria

    Addressing the under-reporting of adverse drug reactions in public health programs controlling HIV/AIDS, tuberculosis and malaria: A prospective cohort study

    Get PDF
    Background Adverse Drug Reactions (ADRs) are a major clinical and public health problem world-wide. The prompt reporting of suspected ADRs to regulatory authorities to activate drug safety surveillance and regulation appears to be the most pragmatic measure for addressing the problem. This paper evaluated a pharmacovigilance (PV) training model that was designed to improve the reporting of ADRs in public health programs treating the Human Immunodeficiency Virus (HIV), Tuberculosis (TB) and Malaria. Methods A Structured Pharmacovigilance and Training Initiative (SPHAR-TI) model based on the World Health Organization accredited Structured Operational Research and Training Initiative (SOR-IT) model was designed and implemented over a period of 12 months. A prospective cohort design was deployed to evaluate the outcomes of the model. The primary outcomes were knowledge gained and Individual Case Safety Reports (ICSR) (completed adverse drug reactions monitoring forms) submitted, while the secondary outcomes were facility based Pharmacovigilance Committees activated and health facility healthcare workers trained by the participants. Results Fifty-five (98%) participants were trained and followed up for 12 months. More than three quarter of the participants have never received training on pharmacovigilance prior to the course. Yet, a significant gain in knowledge was observed after the participants completed a comprehensive training for six days. In only seven months, 3000 ICSRs (with 100% completeness) were submitted, 2,937 facility based healthcare workers trained and 46 Pharmacovigilance Committees activated by the participants. Overall, a 273% increase in ICSRs submission to the National Agency for Food and Drug Administration and Control (NAFDAC) was observed. Conclusion Participants gained knowledge, which tended to increase the reporting of ADRs. The SPHAR-TI model could be an option for strengthening the continuous reporting of ADRs in public health programs in resource limited settings

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore