9 research outputs found

    Role of Low Environmental Temperature in Peptic Ulcer Development

    Get PDF
    Peptic ulcers are described as acid-induced lesions found in the stomach and duodenum caused by the imbalance between the defending factors of the mucosa and the attacking factors such as hydrochloric acid in gastric juice, with Helicobacter Pylori (H. Pylori) and Non-Steroidal Anti-Inflammatory Drugs NSAIDs. They exhibit seasonal patterns in their occurrence, with higher occurrence in winter and spring and a low occurrence in summer. Temperature plays a major role in their occurrence, some of which have resulted in increased morbidity in some number of diseases, such as gastrointestinal bleeding, caused by an increase in air pressure, dry air (relative humidity) occurring from cold air, and also its actions on the protective effect helicobacter pylori in the human body. Their actions excite the adrenal gland marrow and the sympathetic nerve, causing rapid secretion of adrenaline and non-adrenaline, angiotensin II and endothelin, resulting in damage to the mucosa epithelial, caused by the contraction effect of the adrenal agents on the duodenal mucosa and blood vessel. It causes low expression of Epidermal Growth Factor Receptor (EGFR), Epidermal Growth Factor (EGF), Heat Shock Protein (HSP) 70, Occludin, Nitric Oxide Synthase (NOS), in the gastric mucosa, in extremely cold temperature than those in extremely hot temperature, increasing the gastric acid secretion in extremely cold temperature than in extremely hot temperature. Therefore, this review aims to give general insight into the role of low temperature in peptic ulcer development and further consideration in the treatment of peptic ulcer diseases

    Classification and characterization of bio-oil obtained from catalytic and non-catalytic pyrolysis of desludging sewage sample

    Get PDF
    Sewage sludge is a very harmful waste when improperly discharged into the environment because of its inherent abundant pathogens, organic pollutants, and heavy metal constituents. The pyrolysis of sewage sludge is viewed not only to reduce pollutants associated with it but also one of the viable alternative sources for renewable energy or biofuel production. In this study, the effect of catalyst and temperature on the yield and composition of bio-oil obtained from the catalytic and non-catalytic pyrolysis of desludging sewage samples (DSS) was investigated. Modified pyrolysis reactor was used to pyrolyze the DSS at temperature ranges of 300–400, 400–500, 500–600 and 600–700 ℃ with and without the use of zeolite-Y catalyst. The ‘heterogeneous’ catalysis reaction yielded 20.9 wt% bio-oil, while the reaction without catalyst yielded 18.2 wt% bio-oil. Pyrolysis of the DSS favored char yield of between 55.4 and 76.6 wt%. The X-ray Fluorescence (XRF) analysis showed high silica (46 and 56.1 wt%), calcium (20.9 and 15.50 wt%), and low organic matter (12 and 12.87 wt%) contents present in the desludging feedstock before and after pyrolysis respectively. The gas chromatography–mass spectrometry (GCMS) analysis indicated the presence of nitrogen-containing compounds (between 20 and 50 wt%), mono-aromatics (18 and 28 wt%) and oxygenated compounds, in the form of carboxylic acids, aliphatics, ketones, ethers, esters and aldehydes in the bio-oils. Pyrolysis process development is, therefore, essential to clean the environment of pollutants from sewage sludge, by its conversion to more useful chemicals. In contrast, sewage sludge with high silica content may be tailored to the production of building materials

    Effects of the Inclusion of Andrographis paniculata Leaf on the Functional Properties and Pasting Characteristics of Wheat-pearl Millet-Based Flour Blends

    No full text
    This study evaluated flour blends from Wheat, Pearl millet and Andrographis paniculata leaf for functional properties and pasting characteristics profiling. The functional properties such as solubility, gelling capacity, water absorption capacity (WAC), Oil absorption capacity (OAC), Bulk density, foaming capacity and stability and swelling capacity and the pasting characteristics were studied. The inclusion of A. paniculata leaf flour in the blends revealed a significant general increase in water absorption capacity, oil absorption capacity, swelling capacity, and bulk density. However, a general decrease in the foaming capacity, solubility, and least gelation was observed as the inclusion of A. paniculata leaf flour increased. The pasting properties of WPMF (flour blend without the inclusion of A. paniculata leaf flour) exhibited the following values: peak viscosity (658 RVU), breakdown (372 RVU), final viscosity (923 RVU), setback (637 RVU), peak time (5.07 min), and pasting temperature (84.8oC). The inclusion of A. paniculata leaf flour in the blends led to a significant general decrease in all the pasting factors. The inclusion of A. paniculata had a significant effect on the functional and pasting properties of wheat-pearl millet based flour

    Nickel(ii) tetra-aminophthalocyanine modified MWCNTs as potential nanocomposite materials for the development of supercapacitors

    Get PDF
    The supercapacitive properties of nickel(II) tetraaminophthalocyanine (NiTAPc)/multi-walled carbon nanotube (MWCNT) nanocomposite films have been interrogated for the first time and found to possess a maximum specific capacitance of 981 ± 57 F g-1 (200 ± 12 mF cm-2), a maximum power density of 700 ± 1 Wkg-1, a maximum specific energy of 134 ± 8 Wh kg-1 and excellent stability of over 1500 charge-discharge continuous cycling. Impedimetric study proves that most of the stored energy of the MWCNT-NiTAPc nanocomposite can be accessible at high frequency (720 Hz). When compared to MWCNTs modified with unsubstituted nickel(II) phthalocyanine (MWCNT-NiPc) or nickel(II) tetra-tert-butylphthalocyanine (MWCNT-tBuNiPc), MWCNT-NiTAPc exhibited superior supercapacitive behaviour, possibly due to the influence of nitrogen-containing groups on the phthalocyanine rings
    corecore