269 research outputs found

    Modality, Potentiality and Contradiction in Quantum Mechanics

    Get PDF
    In [11], Newton da Costa together with the author of this paper argued in favor of the possibility to consider quantum superpositions in terms of a paraconsistent approach. We claimed that, even though most interpretations of quantum mechanics (QM) attempt to escape contradictions, there are many hints that indicate it could be worth while to engage in a research of this kind. Recently, Arenhart and Krause [1, 2, 3] have raised several arguments against this approach and claimed that, taking into account the square of opposition, quantum superpositions are better understood in terms of contrariety propositions rather than contradictory propositions. In [17] we defended the Paraconsistent Approach to Quantum Superpositions (PAQS) and provided arguments in favor of its development. In the present paper we attempt to analyze the meanings of modality, potentiality and contradiction in QM, and provide further arguments of why the PAQS is better suited, than the Contrariety Approach to Quantum Superpositions (CAQS) proposed by Arenhart and Krause, to face the interpretational questions that quantum technology is forcing us to consider.Comment: Published in: New Directions in Paraconsistent Logic, J-Y B\'eziau M. Chakraborty & S. Dutta (Eds.), Springer, in press. arXiv admin note: text overlap with arXiv:1404.518

    Functional kinds: a skeptical look

    Get PDF
    The functionalist approach to kinds has suffered recently due to its association with law-based approaches to induction and explanation. Philosophers of science increasingly view nomological approaches as inappropriate for the special sciences like psychology and biology, which has led to a surge of interest in approaches to natural kinds that are more obviously compatible with mechanistic and model-based methods, especially homeostatic property cluster theory. But can the functionalist approach to kinds be weaned off its dependency on laws? Dan Weiskopf has recently offered a reboot of the functionalist program by replacing its nomological commitments with a model-based approach more closely derived from practice in psychology. Roughly, Weiskopf holds that the natural kinds of psychology will be the functional properties that feature in many empirically successful cognitive models, and that those properties need not be localized to parts of an underlying mechanism. I here skeptically examine the three modeling practices that Weiskopf thinks introduce such non-localizable properties: fictionalization, reification, and functional abstraction. In each case, I argue that recognizing functional properties introduced by these practices as autonomous kinds comes at clear cost to those explanations’ counterfactual explanatory power. At each step, a tempting functionalist response is parochialism: to hold that the false or omitted counterfactuals fall outside the modeler’s explanatory aims, and so should not be counted against functional kinds. I conclude by noting the dangers this attitude poses to scientific disagreement, inviting functionalists to better articulate how the individuation conditions for functional kinds might outstrip the perspective of a single modeler

    The strong emergence of molecular structure

    Get PDF
    One of the most plausible and widely discussed examples of strong emergence is molecular structure. The only detailed account of it, which has been very influential, is due to Robin Hendry and is formulated in terms of downward causation. This paper explains Hendry’s account of the strong emergence of molecular structure and argues that it is coherent only if one assumes a diachronic reflexive notion of downward causation. However, in the context of this notion of downward causation, the strong emergence of molecular structure faces three challenges that have not been met and which have so far remained unnoticed. First, the putative empirical evidence presented for the strong emergence of molecular structure equally undermines supervenience, which is one of the main tenets of strong emergence. Secondly, it is ambiguous how the assumption of determinate nuclear positions is invoked for the support of strong emergence, as the role of this assumption in Hendry’s argument can be interpreted in more than one way. Lastly, there are understandings of causation which render the postulation of a downward causal relation between a molecule’s structure and its quantum mechanical entities, untenable

    What is theoretical progress of science?

    Get PDF
    The epistemic conception of scientific progress equates progress with accumulation of scientific knowledge. I argue that the epistemic conception fails to fully capture scientific progress: theoretical progress, in particular, can transcend scientific knowledge in important ways. Sometimes theoretical progress can be a matter of new theories ‘latching better onto unobservable reality’ in a way that need not be a matter of new knowledge. Recognising this further dimension of theoretical progress is particularly significant for understanding scientific realism, since realism is naturally construed as the claim that science makes theoretical progress. Some prominent realist positions (regarding fundamental physics, in particular) are best understood in terms of commitment to theoretical progress that cannot be equated with accumulation of scientific knowledge

    Regional microbial signatures positively correlate with differential wine phenotypes: evidence for a microbial aspect to terroir

    Get PDF
    Many crops display differential geographic phenotypes and sensorial signatures, encapsulated by the concept of terroir. The drivers behind these differences remain elusive, and the potential contribution of microbes has been ignored until recently. Significant genetic differentiation between microbial communities and populations from different geographic locations has been demonstrated, but crucially it has not been shown whether this correlates with differential agricultural phenotypes or not. Using wine as a model system, we utilize the regionally genetically differentiated population of Saccharomyces cerevisiae in New Zealand and objectively demonstrate that these populations differentially affect wine phenotype, which is driven by a complex mix of chemicals. These findings reveal the importance of microbial populations for the regional identity of wine, and potentially extend to other important agricultural commodities. Moreover, this suggests that long-term implementation of methods maintaining differential biodiversity may have tangible economic imperatives as well as being desirable in terms of employing agricultural practices that increase responsible environmental stewardship

    Factive Scientific Understanding Without Accurate Representation

    Get PDF
    This paper analyzes two ways idealized biological models produce factive scientific understanding. I then argue that models can provide factive scientific understanding of a phenomenon without providing an accurate representation of the (difference-making) features of their real-world target system(s). My analysis of these cases also suggests that the debate over scientific realism needs to investigate the factive scientific understanding produced by scientists’ use of idealized models rather than the accuracy of scientific models themselves

    Association between Grape Yeast Communities and the Vineyard Ecosystems

    Get PDF
    The grape yeast biota from several wine-producing areas, with distinct soil types and grapevine training systems, was assessed on five islands of Azores Archipelago, and differences in yeast communities composition associated with the geographic origin of the grapes were explored. Fifty-seven grape samples belonging to the Vitis vinifera grapevine cultivars Verdelho dos Acores (Verdelho), Arinto da Terceira (Arinto) and Terrantez do Pico (Terrantez) were collected in two consecutive years and 40 spontaneous fermentations were achieved. A total of 1710 yeast isolates were obtained from freshly crushed grapes and 1200 from final stage of fermentations. Twenty-eight species were identified, Hanseniaspura uvarum, Pichia terricola and Metschnikowia pulcherrima being the three most representative species isolated. Candida carpophila was encountered for the first time as an inhabitant of grape or wine-associated environments. In both sampling years, a higher proportion of H. uvarum in fresh grapes from Verdelho cultivar was observed, in comparison with Arinto cultivar. Qualitatively significant differences were found among yeast communities from several locations on five islands of the Archipelago, particularly in locations with distinctive agro-ecological compositions. Our results are in agreement with the statement that grape-associated microbial biogeography is non-randomly associated with interactions of climate, soil, cultivar, and vine training systems in vineyard ecosystems. Our observations strongly support a possible linkage between grape yeast and wine typicality, reinforcing the statement that different viti-cultural terroirs harbor distinctive yeast biota, in particular in vineyards with very distinctive environmental conditions.Joao Drumonde Neves is the recipient of a fellowship of the Azorean Government (M321/006/F/2008) and PROEMPREGO. This work was supported by the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569) funded by national funds through the FCT I.P. and by the ERDF through the COMPETE2020 - Programa Operacional Competitividade e Internacionalizacao (POCI), and by national funds through FCT by the projects FCOMP-01-0124-008775, PTDC/AGR-ALI/103392/2008 and PTDC/AGR-ALI/121062/2010.info:eu-repo/semantics/publishedVersio

    On the Mathematical Constitution and Explanation of Physical Facts

    Get PDF
    The mathematical nature of modern physics suggests that mathematics is bound to play some role in explaining physical reality. Yet, there is an ongoing controversy about the prospects of mathematical explanations of physical facts and their nature. A common view has it that mathematics provides a rich and indispensable language for representing physical reality but that, ontologically, physical facts are not mathematical and, accordingly, mathematical facts cannot really explain physical facts. In what follows, I challenge this common view. I argue that, in addition to its representational role, in modern physics mathematics is constitutive of the physical. Granted the mathematical constitution of the physical, I propose an account of explanation in which mathematical frameworks, structures, and facts explain physical facts. In this account, mathematical explanations of physical facts are either species of physical explanations of physical facts in which the mathematical constitution of some physical facts in the explanans are highlighted, or simply explanations in which the mathematical constitution of physical facts are highlighted. In highlighting the mathematical constitution of physical facts, mathematical explanations of physical facts deepen and increase the scope of the understanding of the explained physical facts. I argue that, unlike other accounts of mathematical explanations of physical facts, the proposed account is not subject to the objection that mathematics only represents the physical facts that actually do the explanation. I conclude by briefly considering the implications that the mathematical constitution of the physical has for the question of the unreasonable effectiveness of the use of mathematics in physics
    • …
    corecore