194 research outputs found
Continuum limit of amorphous elastic bodies (III): Three dimensional systems
Extending recent numerical studies on two dimensional amorphous bodies, we
characterize the approach of elastic continuum limit in three dimensional
(weakly polydisperse) Lennard-Jones systems. While performing a systematic
finite-size analysis (for two different quench protocols) we investigate the
non-affine displacement field under external strain, the linear response to an
external delta force and the low-frequency harmonic eigenmodes and their
density distribution. Qualitatively similar behavior is found as in two
dimensions. We demonstrate that the classical elasticity description breaks
down below an intermediate length scale , which in our system is
approximately 23 molecular sizes. This length characterizes the correlations of
the non-affine displacement field, the self-averaging of external noise with
distance from the source and gives the lower wave length bound for the
applicability of the classical eigenfrequency calculations. We trace back the
"Boson-peak" of the density of eigenfrequencies (obtained from the velocity
auto-correlation function) to the inhomogeneities on wave lengths smaller than
.Comment: 27 pages, 11 figures, submitted to Phys. Rev.
Change in acetabular version after lumbar pedicle subtraction osteotomy to correct post-operative flat back: EOS® measurements of 38 acetabula
AbstractBackgroundAbnormalities in acetabular orientation can promote the development of hip osteoarthritis, femoro-acetabular impingement, or even acetabular cup malposition. The objective of the present study was to determine whether pedicle substraction osteotomy (PSO) to correct sagittal spinal imbalance affected acetabular orientation.HypothesisPSO performed to correct sagittal spinal imbalance affects acetabular orientation by changing the pelvic parameters.Materials and methodsThis was a descriptive study in which two observers measured the acetabular parameters on both sides in 19 patients (38 acetabula) before and after PSO for post-operative flat-back syndrome. Mean time from PSO to post-operative measurements was 19months. Measurements were taken twice at a 2-week interval, on standing images obtained using the EOS® imaging system and sterEOS® software to obtain 3D reconstructions of synchronised 2D images. Acetabular anteversion and inclination were measured relative to the vertical plane. Mean pre-PSO and post-PSO values were compared using the paired t-test, and P values lower than 0.05 were considered significant. To assess inter-observer and intra-observer reproducibility, we computed the intra-class correlation coefficients (ICCs).ResultsThe measurements showed significant acetabular retroversion after PSO, of 7.6° on the right and 6.5° on the left (P<0.001). Acetabular inclination diminished significantly, by 4.5° on the right and 2.5° on the left (P<0.01). Inclination of the anterior pelvic plane decreased by 8.4° (P<0.01). Pelvic incidence was unchanged, whereas sacral slope increased by 10.5° (P<0.001) and pelvic tilt decreased by 10.9° (P<0.001). The ICC was 0.98 for both inter-observer and intra-observer reproducibility.ConclusionChanging the sagittal spinal alignment modifies both the pelvic and the acetabular parameters. PSO significantly increases sacral slope, thus inducing anterior pelvic tilt with significant acetabular retroversion. The measurements obtained using sterEOS® showed good inter-observer and intra-observer reproducibility. To our knowledge, this is the first study of changes in acetabular version after PSO
Lagrangian Floer superpotentials and crepant resolutions for toric orbifolds
We investigate the relationship between the Lagrangian Floer superpotentials
for a toric orbifold and its toric crepant resolutions. More specifically, we
study an open string version of the crepant resolution conjecture (CRC) which
states that the Lagrangian Floer superpotential of a Gorenstein toric orbifold
and that of its toric crepant resolution coincide after
analytic continuation of quantum parameters and a change of variables. Relating
this conjecture with the closed CRC, we find that the change of variable
formula which appears in closed CRC can be explained by relations between open
(orbifold) Gromov-Witten invariants. We also discover a geometric explanation
(in terms of virtual counting of stable orbi-discs) for the specialization of
quantum parameters to roots of unity which appears in Y. Ruan's original CRC
["The cohomology ring of crepant resolutions of orbifolds", Gromov-Witten
theory of spin curves and orbifolds, 117-126, Contemp. Math., 403, Amer. Math.
Soc., Providence, RI, 2006]. We prove the open CRC for the weighted projective
spaces using an equality between open
and closed orbifold Gromov-Witten invariants. Along the way, we also prove an
open mirror theorem for these toric orbifolds.Comment: 48 pages, 1 figure; v2: references added and updated, final version,
to appear in CM
Midgut microbiota of the malaria mosquito vector Anopheles gambiae and Interactions with plasmodium falciparum Infection
The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.Institut de Recherche pour le Developpement (IRD); French Agence Nationale pour la Recherche [ANR-11-BSV7-009-01]; European Community [242095, 223601]info:eu-repo/semantics/publishedVersio
OPA1 mutations induce mitochondrial DNA instability and optic atrophy ‘plus’ phenotypes
Mutations in OPA1, a dynamin-related GTPase involved in mitochondrial fusion, cristae organization and control of apoptosis, have been linked to non-syndromic optic neuropathy transmitted as an autosomal-dominant trait (DOA). We here report on eight patients from six independent families showing that mutations in the OPA1 gene can also be responsible for a syndromic form of DOA associated with sensorineural deafness, ataxia, axonal sensory-motor polyneuropathy, chronic progressive external ophthalmoplegia and mitochondrial myopathy with cytochrome c oxidase negative and Ragged Red Fibres. Most remarkably, we demonstrate that these patients all harboured multiple deletions of mitochondrial DNA (mtDNA) in their skeletal muscle, thus revealing an unrecognized role of the OPA1 protein in mtDNA stability. The five OPA1 mutations associated with these DOA ‘plus’ phenotypes were all mis-sense point mutations affecting highly conserved amino acid positions and the nuclear genes previously known to induce mtDNA multiple deletions such as POLG1, PEO1 (Twinkle) and SLC25A4 (ANT1) were ruled out. Our results show that certain OPA1 mutations exert a dominant negative effect responsible for multi-systemic disease, closely related to classical mitochondrial cytopathies, by a mechanism involving mtDNA instability
Measurement of the cosmogenic activation of germanium detectors in EDELWEISS-III
International audienceWe present a measurement of the cosmogenic activation in the germanium cryogenic detectors of the EDELWEISS III direct dark matter search experiment. The decay rates measured in detectors with different exposures to cosmic rays above ground are converted into production rates of different isotopes. The measured production rates in units of nuclei/kg/day are 82 21 for H, 2.8 0.6 for V, 4.6 0.7 for Fe, and 106 13 for Zn. These results are the most accurate for these isotopes. A lower limit on the production rate of Ge of 74 nuclei/kg/day is also presented. They are compared to model predictions present in literature and to estimates calculated with the ACTIVIA code
Signals induced by charge-trapping in EDELWEISS FID detectors: Analytical modeling and applications
The EDELWEISS-III direct dark matter search experiment uses cryogenic HP-Ge detectors Fully covered with Inter-Digitized electrodes (FID). They are operated at low fields (< 1 V/cm), and as a consequence charge-carrier trapping significantly affects both the ionization and heat energy measurements. This paper describes an analytical model of the signals induced by trapped charges in FID detectors based on the Shockley-Ramo theorem. It is used to demonstrate that veto electrodes, initially designed for the sole purpose of surface event rejection, can be used to provide a sensitivity to the depth of the energy deposits, characterize the trapping in the crystals, perform heat and ionization energy corrections and improve the ionization baseline resolutions. These procedures are applied successfully to actual data
Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach
We report on a dark matter search for a Weakly Interacting Massive Particle (WIMP) in the mass range mχ∈[4,30]GeV/c2 with the EDELWEISS-III experiment. A 2D profile likelihood analysis is performed on data from eight selected detectors with the lowest energy thresholds leading to a combined fiducial exposure of 496 kg-days. External backgrounds from γ- and β-radiation, recoils from 206Pb and neutrons as well as detector intrinsic backgrounds were modelled from data outside the region of interest and constrained in the analysis. The basic data selection and most of the background models are the same as those used in a previously published analysis based on boosted decision trees (BDT) [1]. For the likelihood approach applied in the analysis presented here, a larger signal efficiency and a subtraction of the expected background lead to a higher sensitivity, especially for the lowest WIMP masses probed. No statistically significant signal was found and upper limits on the spin-independent WIMP-nucleon scattering cross section can be set with a hypothesis test based on the profile likelihood test statistics. The 90 % C.L. exclusion limit set for WIMPs with mχ=4GeV/c2 is 1.6×10-39cm2, which is an improvement of a factor of seven with respect to the BDT-based analysis. For WIMP masses above 15GeV/c2 the exclusion limits found with both analyses are in good agreement
Scintillating bolometers based on ZnMoO4 and Zn100MoO4 crystals to search for 0ν2β decay of 100Mo (LUMINEU project): first tests at the Modane Underground Laboratory
The technology of scintillating bolometers based on zinc molybdate (ZnMoO4) crystals is under development within the LUMINEU project to search for decay of 100Mo with the goal to set the basis for large scale experiments capable to explore the inverted hierarchy region of the neutrino mass pattern. Advanced ZnMoO4 crystal scintillators with mass of ∼0.3 kg were developed and Zn100MoO4 crystal from enriched 100Mo was produced for the first time by using the low-thermal-gradient Czochralski technique. One ZnMoO4 scintillator and two samples (59 g and 63 g) cut from the enriched boule were tested aboveground at milli-Kelvin temperature as scintillating bolometers showing a high detection performance. The first results of the low background measurements with three ZnMoO4 and two enriched detectors installed in the EDELWEISS set-up at the Modane Underground Laboratory (France) are presented
- …