39 research outputs found

    Insecticide Sensitivity of Native Chloride and Sodium Channels in a Mosquito Cell Line

    Get PDF
    The aim of this study was to investigate the utility of cultured Anopheles gambiae Sua1B cells for insecticide screening applications without genetic engineering or other treatments. Sua1B cells were exposed to the known insecticidal compounds lindane and DIDS, which inhibited cell growth at micromolar concentrations. In patch clamp studies, DIDS produced partial inhibition (69%) of chloride current amplitudes, and an IC50 of 5.1 μM was determined for Sua1B cells. A sub-set of chloride currents showed no response to DIDS; however, inhibition (64%) of these currents was achieved using a low chloride saline solution, confirming their identity as chloride channels. In contrast, lindane increased chloride current amplitude (EC50 = 116 nM), which was reversed when cells were bathed in calcium-free extracellular solution. Voltage-sensitive chloride channels were also inhibited by the presence of fenvalerate, a type 2 pyrethroid, but not significantly blocked by type 1 allethrin, an effect not previously shown in insects. Although no evidence of fast inward currents typical of sodium channels was observed, studies with fenvalerate in combination with veratridine, a sodium channel activator, revealed complete inhibition of cell growth that was best fit by a two-site binding model. The high potency effect was completely inhibited in the presence of tetrodotoxin, a specific sodium channel blocker, suggesting the presence of some type of sodium channel. Thus, Sua1B cells express native insect ion channels with potential utility for insecticide screening

    A survey of the eutrophication state of an urbanized tropical estuary, the case of the Great Vitória Estuarine System, Brazil.

    Get PDF
    Although, estuarine ecosystems have an ecological and economical importance as they have a high  biological productivity and occur within a unique and dynamic environment, they have been subjected to anthropogenic alterations. The Great Vitória Estuarine System (GVES), Espírito Santo State, Brazil, is not an exception, as urbanization is growing around it with a high quantity of sewage been added to the system. In order to evaluate the eutrophication state as well as the meiofauna response to it, several parameters in both sediments and in the water column were assessed. Orthophosphate, nitrite, nitrate, ammonia, chla and Fecal Coliform counts (FC) ranged from 0.2 to 3.2 μM, 0.25 to 1.14 μM, 1.83 to 0.19μM, 4.19 to 49.23 μM, 0.61 to 6.72 μg/L and 14 to 5.0x104 MPN/100 mL of water, respectively. These results showed that the GVES is under an eutrophication process and that the Passagem Channel experienced the largest impacts. Sewage plays an important role in this eutrophication process as indicated by PCA and correlations tests. The density of meiofauna showed similar values to those found in environments with similar levels of anthropogenic stress. This multi-approach evaluation revealed several aspects of the impacted estuary and could be used as an important tool to manage better the estuary.Although, estuarine ecosystems have an ecological and economical importance as they have a high  biological productivity and occur within a unique and dynamic environment, they have been subjected to anthropogenic alterations. The Great Vitória Estuarine System (GVES), Espírito Santo State, Brazil, is not an exception, as urbanization is growing around it with a high quantity of sewage been added to the system. In order to evaluate the eutrophication state as well as the meiofauna response to it, several parameters in both sediments and in the water column were assessed. Orthophosphate, nitrite, nitrate, ammonia, chla and Fecal Coliform counts (FC) ranged from 0.2 to 3.2 μM, 0.25 to 1.14 μM, 1.83 to 0.19μM, 4.19 to 49.23 μM, 0.61 to 6.72 μg/L and 14 to 5.0x104 MPN/100 mL of water, respectively. These results showed that the GVES is under an eutrophication process and that the Passagem Channel experienced the largest impacts. Sewage plays an important role in this eutrophication process as indicated by PCA and correlations tests. The density of meiofauna showed similar values to those found in environments with similar levels of anthropogenic stress. This multi-approach evaluation revealed several aspects of the impacted estuary and could be used as an important tool to manage better the estuary

    Orange jasmine as a trap crop to control Diaphorina citri

    Full text link
    [EN] Novel, suitable and sustainable alternative control tactics that have the potential to reduce migration of Diaphorina citri into commercial citrus orchards are essential to improve management of huanglongbing (HLB). In this study, the effect of orange jasmine (Murraya paniculata) as a border trap crop on psyllid settlement and dispersal was assessed in citrus orchards. Furthermore, volatile emission profiles and relative attractiveness of both orange jasmine and sweet orange (Citrus¿×¿aurantium L., syn. Citrus sinensis (L.) Osbeck) nursery flushes to D. citri were investigated. In newly established citrus orchards, the trap crop reduced the capture of psyllids in yellow sticky traps and the number of psyllids that settled on citrus trees compared to fallow mowed grass fields by 40% and 83%, respectively. Psyllids were attracted and killed by thiamethoxam-treated orange jasmine suggesting that the trap crop could act as a `sink¿ for D. citri. Additionally, the presence of the trap crop reduced HLB incidence by 43%. Olfactometer experiments showed that orange jasmine plays an attractive role on psyllid behavior and that this attractiveness may be associated with differences in the volatile profiles emitted by orange jasmine in comparison with sweet orange. Results indicated that insecticide-treated M. paniculata may act as a trap crop to attract and kill D. citri before they settled on the edges of citrus orchards, which significantly contributes to the reduction of HLB primary spread.This work was supported by Fund for Citrus Protection (Fundecitrus) and by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) (Proc. 2015/07011-3). We thank Moacir Celio Vizone, Felipe Marinho Martini and Joao Pedro Ancoma Lopes for technical support with experiments. Furthermore, we thank Cambuhy Agricola Ltda. and University of Araraquara (Uniara) for providing the areas in which the field experiments were performed. Second author received scholarship from National Council for Scientific and Technological Development (CNPq)/Brazil (Proc. 300153/2011-2).Tomaseto, AF.; Marques, RN.; Fereres, A.; Zanardi, OZ.; Volpe, HXL.; Alquézar-García, B.; Peña, L.... (2019). Orange jasmine as a trap crop to control Diaphorina citri. Scientific Reports. 9:1-11. https://doi.org/10.1038/s41598-019-38597-5S1119Bové, J. M. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol. 88, 7–37 (2006).Alvarez, S., Rohrig, E., Solís, D. & Thomas, M. H. Citrus greening disease (Huanglongbing) in Florida: economic impact, management and the potential for biological control. Agric. Res. 5, 109–118 (2016).Belasque, J. Jr. et al. Lessons from huanglongbing management in São Paulo state, Brazil. J. Plant Pathol. 92, 285–302 (2010).Boina, D. R., Meyer, W. L., Onagbola, E. O. & Stelinski, L. L. Quantifying dispersal of Diaphorina citri (Hemiptera: Psyllidae) by immunomarking and potential impact of unmanaged groves on commercial citrus management. Environ. Entomol. 38, 1250–8 (2009).Lewis-Rosenblum, H., Martini, X., Tiwari, S. & Stelinski, L. L. Seasonal movement patterns and long-range dispersal of Asian citrus psyllid in Florida citrus. J. Econ. Entomol. 108, 3–10 (2015).Hall, D. G. & Hentz, M. G. Seasonal flight activity by the Asian citrus psyllid in east central Florida. Entomol. Exp. Appl. 139, 75–85 (2011).Tomaseto, A. F., Krugner, R. & Lopes, J. R. S. Effect of plant barriers and citrus leaf age on dispersal of Diaphorina citri (Hemiptera: Liviidae). J. Appl. Entomol. 140, 91–102 (2016).Gottwald, T. R. Current epidemiological understanding of citrus huanglongbing. Annu. Rev. Phytopathol. 48, 119–139 (2010).Bassanezi, R. B. et al. Efficacy of area-wide inoculum reduction and vector control on temporal progress of huanglongbing in young sweet orange plantings. Plant Dis. 97, 789–796 (2013).Sétamou, M. & Bartels, D. W. Living on the edges: spatial niche occupation of Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), in citrus groves. PLoS One 10, 1–21 (2015).Gottwald, T., Irey, M., Gast, T. & Parnell, S. Spatio-temporal analysis of an HLB epidemic in Florida and implications for spread. In Proceedings of the 17 th Conference of International Organization of Citrus Virologists, IOCV, University of California, Riverside, CA, 84–97 (2010).Shelton, A. M. & Badenes-Perez, F. R. Concepts and applications of trap cropping in pest management. Annu. Rev. Entomol 51, 285–308 (2006).Hokkanen, H. M. T. Trap cropping in pest management. Annu. Rev. Entomol. 36, 119–138 (1991).Stern, V. M., Mueller, A., Sevacherian, V. & Way, M. Lygus bug control in cotton through alfalfa interplanting. Calif. Agric. 8–10 (1969).Godfrey, L. D. & Leigh, T. F. Alfalfa harvest strategy effect on lygus bug (Hemiptera: Miridae) and insect predator population density: Implications for use as trap crop in cotton. Environ. Entomol. 23, 1106–1118 (1994).Gonsalves, D. & Ferreira, S. Transgenic papaya: a case for managing risks of Papaya ringspot virus in Hawaii. Plant Heal. Prog. 1–6, https://doi.org/10.1094/PHP-2003-1113-03-RV (2003)Aubert, B. Trioza erytheae del Guercio and Diaphorina citri Kuwayama (Homoptera: Psylloidea), the two vectors of citrus greening disease: biological aspects and possible control strategies. Fruits 42, 149–162 (1987).Leong, S. C. T., Fatimah, A., Beattie, A., Heng, R. K. J. & King, W. S. Influence of host plant species and flush growth stage on the Asian citrus psyllid, Diaphorina citri Kuwayama. Am. J. Agric. Biol. Sci. 6, 536–543 (2011).Patt, J. M. & Sétamou, M. Responses of the Asian citrus psyllid to volatiles emitted by the flushing shoots of its rutaceous host plants. Environ. Entomol. 39, 618–24 (2010).Damsteegt, V. D. et al. Murraya paniculata and related species as potential hosts and inoculum reservoirs of ‘Candidatus Liberibacter asiaticus’, causal agent of huanglongbing. Plant Dis. 94, 528–533 (2010).Lopes, S. A. et al. Liberibacters associated with orange jasmine in Brazil: Incidence in urban areas and relatedness to citrus liberibacters. Plant Pathol. 59, 1044–1053 (2010).Cifuentes-Arenas, J. C. Huanglongbing e Diaphorina citri: Estudos das relações patógeno-vetor-hospedeiro. Ph.D. Thesis. Faculdade de Ciências Agrárias e Veterinárias/Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil. 1–133 (2017).Morilla, G. et al. Pepper (Capsicum annuum) is a dead-end host for Tomato yellow leaf curl virus. Phytopathology 95, 1089–1097 (2005).Midega, C. A. O., Pittchar, J. O., Pickett, J. A., Hailu, G. W. & Khan, Z. R. A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J. E. Smith), in maize in East Africa. Crop Prot. 105, 10–15 (2018).Miranda, M. P. et al. Processed kaolin affects the probing and settling behavior of Diaphorina citri (Hemiptera: Liviidae). Pest Manag. Sci. 74, 1964–1972 (2018).Kobori, Y., Nakata, T., Ohto, Y. & Takasu, F. Dispersal of adult Asian citrus psyllid, Diaphorina citri Kuwayama (Homoptera: Psyllidae), the vector of citrus greening disease, in artificial release experiments. Appl. Entomol. Zool. 46, 27–30 (2011).Sétamou, M. et al. Diurnal patterns of flight activity and effects of light on host finding behavior of the Asian citrus psyllid. J. Insect Behav. 25, 264–276 (2012).Wenninger, E. J., Stelinski, L. L. & Hall, D. G. Roles of olfactory cues, visual cues, and mating status in orientation of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) to four different host plants. Environ. Entomol. 38, 225–234 (2009).Miranda, M. P., Dos Santos, F. L., Felippe, M. R., Moreno, A. & Fereres, A. Effect of UV-blocking plastic films on take-off and host plant finding ability of Diaphorina citri (Hemiptera: Liviidae). J. Econ. Entomol. 108, 245–251 (2015).Visser, J. H. Host odor perception in phytophagous insects. Annu. Rev. Entomol. 31, 121–144 (1986).Robbins, P. S., Alessandro, R. T., Stelinski, L. L. & Lapointe, S. L. Volatile profiles of young leaves of Rutaceae spp. varying in susceptibility to the Asian citrus psyllid (Hemiptera: Psyllidae). Florida Entomol. 95, 774–776 (2012).Fancelli, M. et al. Attractiveness of host plant volatile extracts to the Asian citrus psyllid, Diaphorina citri, is reduced by terpenoids from the non-host cashew. J. Chem. Ecol. 44, 397–405 (2018).Alquézar, B. et al. β-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters. Sci. Rep. 7, 5639 (2017).Jones, R. A. C. Effects of cereal borders, admixture with cereals and plant density on the spread of bean yellow mosaic potyvirus into narrow‐leafed lupins (Lupinus angustifolius). Ann. Appl. Biol. 122, 501–518 (1993).Beloti, V. H., Alves, G. R., Coletta-Filho, H. D. & Yamamoto, P. T. The Asian citrus psyllid host Murraya koenigii is immune to citrus huanglongbing pathogen ‘Candidatus Liberibacter asiaticus’. Phytopathology 108, 1089–1094 (2018).Walter, A. J., Duan, Y. & Hall, D. G. Titers of ‘Ca. Liberibacter asiaticus’ in Murraya paniculata and Murraya-reared Diaphorina citri are much lower than in Citrus and Citrus-reared psyllids. HortScience 47, 1449–1452 (2012).Walter, A. J., Hall, D. G. & Duan, Y. P. Low incidence of ‘Candidatus Liberibacter asiaticus’ in Murraya paniculata and associated Diaphorina citri. Plant Dis. 96, 827–832 (2012).Ammar, E.-D. D., Ramos, J. E., Hall, D. G., Dawson, W. O. & Shatters, R. G. Acquisition, replication and inoculation of Candidatus Liberibacter asiaticus following various acquisition periods on huanglongbing-infected citrus by nymphs and adults of the Asian citrus psyllid. PLoS One 11, e0159594 (2016).Inoue, H. et al. Enhanced proliferation and efficient transmission of Candidatus Liberibacter asiaticus by adult Diaphorina citri after acquisition feeding in the nymphal stage. Ann. Appl. Biol. 155, 29–36 (2009).Pelz-Stelinski, K. S., Brlansky, R. H., Ebert, T. A. & Rogers, M. E. Transmission parameters for Candidatus Liberibacter asiaticus by Asian citrus psyllid (Hemiptera: Psyllidae). J. Econ. Entomol. 103, 1531–1541 (2010).Canale, M. C. et al. Latency and persistence of ‘Candidatus Liberibacter asiaticus’ in its psyllid vector, Diaphorina citri (Hemiptera: Liviidae). Phytopathology 107, 264–272 (2017).Li, W., Hartung, J. S. & Levy, L. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J. Microbiol. Methods 66, 104–115 (2006).Nakata, T. Effectiveness of micronized fluorescent powder for marking citrus psyllid. Diaphorina citri. Appl. Entomol. Zool. 43, 33–36 (2008).Tomaseto, A. F. et al. Environmental conditions for Diaphorina citri Kuwayama (Hemiptera: Liviidae) take-off. J. Appl. Entomol. 142, 104–113 (2018).Paris, T. M., Croxton, S. D., Stansly, P. A. & Allan, S. A. Temporal response and attraction of Diaphorina citri to visual stimuli. Entomol. Exp. Appl. 155, 137–147 (2015).Zanardi, O. Z. et al. Putative sex pheromone of the Asian citrus psyllid, Diaphorina citri, breaks down into an attractant. Sci. Rep. 8, 455 (2018).Metsalu, T. & Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 43, W566–W570 (2015).Fournier, D. A. et al. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27, 233–249 (2012).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Nelder, J. A. & Wedderburn, R. W. M. Generalized linear models. J. R. Stat. Soc. 135, 370–384 (1972).Demétrio, C. G. B., Hinde, J. & Moral, R. A. In Ecological Modelling Applied to Entomology (eds Ferreira, C. P. & Godoy, W. A. C.) 219–259 (Springer, 2014).Lenth, R. V. Least-Squares Means: the R package lsmeans. J. Stat. Softw. 69, (2016).R Core Team R: A language and environment for statistical computing. 2015. R Foundation for Statistical Computing, Vienna, Austria (2015). Available at, http://www.r-project.org/ . (Accessed: 20th July 2017)

    Susceptibility of Tribolium castaneum life stages exposed to elevated temperatures during heat treatments of a pilot flour mill: influence of sanitation, temperatures attained among mills floors, and costs

    Get PDF
    The influence of sanitation on responses of life stages of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), was investigated in a pilot flour mill subjected to three, 24-h heat treatments by using forced-air gas heaters fueled by propane. Two sanitation levels, dusting of wheat flour and 2-cm-deep flour, were created in 25 plastic bioassay boxes, each holding eggs, young larvae, old larvae, pupae, and adults of T. castaneum plus two temperature sensors. Data loggers (48) were placed on the five mill floors to record air temperatures. The time required to reach 50°C, time above 50°C, and the maximum temperature among mill floors and in bioassay boxes were measured. The maximum temperature in bioassay boxes and in the mill was lower on the first floor than on other floors. This trend was apparent in time required to reach 50°C and time above 50°C, especially in compartments with 2-cm-deep flour. The mean ± SE mortality of T. castaneum life stages on the first floor was 55.5 ± 12.9–98.6 ± 0.8%; it was 93.2 ± 6.7–100 ± 0.0% on other floors. Adults were the least susceptible stage. Mortality of T. castaneum stages in compartments with 2-cm-deep flour was generally lower than those with flour dust. Costs for the three heat treatments ranged from US27,438to27,438 to 28,838. An effective heat treatment can be conducted within 24 h, provided temperatures on mill floors reach 50°C in 8–12 h and are held above 50°C for at least 10–14 h, with maximum temperatures held between 50 and 60°C

    Biochemical and Hematologic Manifestations of Gastric Intrinsic Factor (GIF) Deficiency: A Treatable Cause of B12 Deficiency in the Old Order Mennonite Population of Southwestern Ontario

    No full text
    Intrinsic factor deficiency (OMIM #261000, IFD) is a rare inherited disorder of vitamin B12 metabolism due to mutations in the gastric intrinsic factor (GIF) gene. We report three individuals from an Old Order Mennonite community who presented with B12 deficiency. Two cases are siblings born to consanguineous parents and the third case is not known to be closely related. The older male sib presented at 4 years with gastrointestinal symptoms, listlessness, and pallor. He had pancytopenia with megaloblastic anemia. Serum B12 was 61 (198–615 pmol/L). Methylmalonic aciduria was present. C3 was elevated on acylcarnitine profile. Homocysteine was high at 16.7 (5.0–12.0 umol/L). His asymptomatic female sibling was also found to have B12 deficiency. Genetic testing for methylmalonic aciduria (MMAA), transcobalamin deficiency (TCN2), and Imerslund-Gräsbeck syndrome (AMN) showed no mutation in both siblings. The third patient, a 34-year-old woman, had presented in infancy with a diagnosis of pernicious anemia. Mutation analysis of GIF revealed compound heterozygosity for a c.79+1G\u3eA substitution and a c.973delG deletion in all three individuals. Oral or parenteral vitamin B12 has led to complete recovery of clinical parameters and vitamin B12 levels. Newborn screening samples on the siblings revealed normal methylcitrate, C3, and C3/C2 ratios thus indicating no disruption of propionic or methylmalonic acid metabolism. A high index of suspicion should be maintained if children present with megaloblastic anemia since GIF deficiency is a treatable disorder and newborn screening may not be able to detect this condition
    corecore