59 research outputs found

    Genome-Wide Scan Identifies TNIP1, PSORS1C1, and RHOB as Novel Risk Loci for Systemic Sclerosis

    Get PDF
    Systemic sclerosis (SSc) is an orphan, complex, inflammatory disease affecting the immune system and connective tissue. SSc stands out as a severely incapacitating and life-threatening inflammatory rheumatic disease, with a largely unknown pathogenesis. We have designed a two-stage genome-wide association study of SSc using case-control samples from France, Italy, Germany, and Northern Europe. The initial genome-wide scan was conducted in a French post quality-control sample of 564 cases and 1,776 controls, using almost 500 K SNPs. Two SNPs from the MHC region, together with the 6 loci outside MHC having at least one SNP with a P<10−5 were selected for follow-up analysis. These markers were genotyped in a post-QC replication sample of 1,682 SSc cases and 3,926 controls. The three top SNPs are in strong linkage disequilibrium and located on 6p21, in the HLA-DQB1 gene: rs9275224, P = 9.18×10−8, OR = 0.69, 95% CI [0.60–0.79]; rs6457617, P = 1.14×10−7 and rs9275245, P = 1.39×10−7. Within the MHC region, the next most associated SNP (rs3130573, P = 1.86×10−5, OR = 1.36 [1.18–1.56]) is located in the PSORS1C1 gene. Outside the MHC region, our GWAS analysis revealed 7 top SNPs (P<10−5) that spanned 6 independent genomic regions. Follow-up of the 17 top SNPs in an independent sample of 1,682 SSc and 3,926 controls showed associations at PSORS1C1 (overall P = 5.70×10−10, OR:1.25), TNIP1 (P = 4.68×10−9, OR:1.31), and RHOB loci (P = 3.17×10−6, OR:1.21). Because of its biological relevance, and previous reports of genetic association at this locus with connective tissue disorders, we investigated TNIP1 expression. A markedly reduced expression of the TNIP1 gene and also its protein product were observed both in lesional skin tissue and in cultured dermal fibroblasts from SSc patients. Furthermore, TNIP1 showed in vitro inhibitory effects on inflammatory cytokine-induced collagen production. The genetic signal of association with TNIP1 variants, together with tissular and cellular investigations, suggests that this pathway has a critical role in regulating autoimmunity and SSc pathogenesis

    Posttranscriptional Regulation of the Human LDL Receptor by the U2-Spliceosome

    Get PDF
    Background: The low-density lipoprotein receptor (LDLR) in the liver is the major determinant of LDL-cholesterol levels in human plasma. The discovery of genes that regulate the activity of LDLR helps to identify pathomechanisms of hypercholesterolemia and novel therapeutic targets against atherosclerotic cardiovascular disease.Methods: We performed a genome-wide RNA interference screen for genes limiting the uptake of fluorescent LDL into Huh-7 hepatocarcinoma cells. Top hit genes were validated by in vitro experiments as well as analyses of datasets on gene expression and variants in human populations.Results: The knockdown of 54 genes significantly inhibited LDL uptake. Fifteen of them encode for components or interactors of the U2-spliceosome. Knocking down any one of 11 out of 15 genes resulted in the selective retention of intron 3 of LDLR. The translated LDLR fragment lacks 88% of the full length LDLR and is detectable neither in non-transfected cells nor in human plasma. The hepatic expression of the intron 3 retention transcript is increased in non-alcoholic fatty liver disease as well as after bariatric surgery. Its expression in blood cells correlates with LDL-cholesterol and age. Single nucleotide polymorphisms and three rare variants of one spliceosome gene, RBM25, are associated with LDL-cholesterol in the population and familial hypercholesterolemia, respectively. Compared to overexpression of wild type RBM25, overexpression of the three rare RBM25 mutants in Huh-7 cells led to lower LDL uptake.Conclusions: We identified a novel mechanism of post-transcriptional regulation of LDLR activity in humans and associations of genetic variants of RBM25 with LDL-cholesterol levels.</p

    Lack of Phylogeographic Structure in the Freshwater Cyanobacterium Microcystis aeruginosa Suggests Global Dispersal

    Get PDF
    Background : Free-living microorganisms have long been assumed to have ubiquitous distributions with little biogeographic signature because they typically exhibit high dispersal potential and large population sizes. However, molecular data provide contrasting results and it is far from clear to what extent dispersal limitation determines geographic structuring of microbial populations. We aimed to determine biogeographical patterns of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. Being widely distributed on a global scale but patchily on a regional scale, this prokaryote is an ideal model organism to study microbial dispersal and biogeography. Methodology/Principal Findings : The phylogeography of M. aeruginosa was studied based on a dataset of 311 rDNA internal transcribed spacer (ITS) sequences sampled from six continents. Richness of ITS sequences was high (239 ITS types were detected). Genetic divergence among ITS types averaged 4% (maximum pairwise divergence was 13%). Preliminary analyses revealed nearly completely unresolved phylogenetic relationships and a lack of genetic structure among all sequences due to extensive homoplasy at multiple hypervariable sites. After correcting for this, still no clear phylogeographic structure was detected, and no pattern of isolation by distance was found on a global scale. Concomitantly, genetic differentiation among continents was marginal, whereas variation within continents was high and was mostly shared with all other continents. Similarly, no genetic structure across climate zones was detected. Conclusions/Significance : The high overall diversity and wide global distribution of common ITS types in combination with the lack of phylogeographic structure suggest that intercontinental dispersal of M. aeruginosa ITS types is not rare, and that this species might have a truly cosmopolitan distribution

    Tracheal Dead Space Influences Regional Ventilation Measurement in Dogs

    No full text
    The lung volume at which airway closure begins during expiration (closing volume, CV) can be measured 1) with a radioactive bolus inspired at residual volume (RV) and 2) with the single-breath N2 elimination test. In previous studies in dogs, we observed that N2 CV was systematically larger than 133Xe bolus CV (Xe CV) [N2 CV %vital capacity (VC) = 35 +/- 2.3 (SE) vs. Xe CV %VC = 24 +/- 2.2, P less than 0.01]. Because the regional RV in the dog is evenly distributed throughout the lung and all airways closed at RV, N2 CV is related to the regional distribution of the tracheal N2; differences between N2 and Xe CV could then be related to the size of the inhaled dead space. Simultaneous measurements of Xe and N2 CV were performed at various sites of Xe bolus injection while the regional distribution of the bolus was measured. Injections at the level of the carina increased Xe CV to a value (30 +/- 1.4%VC) near simultaneous N2 CV (32 +/- 1.5%VC) and increased the unevenness of regional distribution of the Xe bolus. The difference between N2 and Xe CV is then the result of the size of the inspired tracheal dead space. Moreover, comparisons between different values of Xe CV require injections of the boluses at the same distance from the carina. </jats:p
    • …
    corecore