64 research outputs found
The Theory of Games
The study of games is tantamount to a study of human behavior in a given economic situation. Here, in simplified form, are some of the basic principles on which the theory of games is based
Actions of the braid group, and new algebraic proofs of results of Dehornoy and Larue
This article surveys many standard results about the braid group with
emphasis on simplifying the usual algebraic proofs.
We use van der Waerden's trick to illuminate the Artin-Magnus proof of the
classic presentation of the algebraic mapping-class group of a punctured disc.
We give a simple, new proof of the Dehornoy-Larue braid-group trichotomy,
and, hence, recover the Dehornoy right-ordering of the braid group.
We then turn to the Birman-Hilden theorem concerning braid-group actions on
free products of cyclic groups, and the consequences derived by Perron-Vannier,
and the connections with the Wada representations. We recall the very simple
Crisp-Paris proof of the Birman-Hilden theorem that uses the Larue-Shpilrain
technique. Studying ends of free groups permits a deeper understanding of the
braid group; this gives us a generalization of the Birman-Hilden theorem.
Studying Jordan curves in the punctured disc permits a still deeper
understanding of the braid group; this gave Larue, in his PhD thesis,
correspondingly deeper results, and, in an appendix, we recall the essence of
Larue's thesis, giving simpler combinatorial proofs.Comment: 51`pages, 13 figure
A note on abscissas of Dirichlet series
[EN] We present an abstract approach to the abscissas of convergence of vector-valued Dirichlet series. As a consequence we deduce that the abscissas for Hardy spaces of Dirichlet series are all equal. We also introduce and study weak versions of the abscissas for scalar-valued Dirichlet series.A. Defant: Partially supported by MINECO and FEDER MTM2017-83262-C2-1-P.
A. PĂ©rez: Supported by La Caixa Foundation, MINECO and FEDER MTM2014-57838-C2-1-P and
FundaciĂłn SĂ©neca - RegiĂłn de Murcia (CARM 19368/PI/14).
P. Sevilla-Peris: Supported by MINECO and FEDER MTM2017-83262-C2-1-P.Defant, A.; PĂ©rez, A.; Sevilla Peris, P. (2019). A note on abscissas of Dirichlet series. Revista de la Real Academia de Ciencias Exactas FĂsicas y Naturales Serie A MatemĂĄticas. 113(3):2639-2653. https://doi.org/10.1007/s13398-019-00647-yS263926531133Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Mon. Math. 136(3), 203â236 (2002)Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann Math. 32(3), 600â622 (1931)Bohr, H.: Ăber die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichletâschen Reihen â a n n s . Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl., pp. 441â488 (1913)Bonet, J.: Abscissas of weak convergence of vector valued Dirichlet series. J. Funct. Anal. 269(12), 3914â3927 (2015)Carando, D., Defant, A., Sevilla-Peris, P.: Bohrâs absolute convergence problem for H p -Dirichlet series in Banach spaces. Anal. PDE 7(2), 513â527 (2014)Carando, D., Defant, A., Sevilla-Peris, P.: Some polynomial versions of cotype and applications. J. Funct. Anal. 270(1), 68â87 (2016)Defant, A., GarcĂa, D., Maestre, M., PĂ©rez-GarcĂa, D.: Bohrâs strip for vector valued Dirichlet series. Math. Ann. 342(3), 533â555 (2008)Defant, A., GarcĂa, D., Maestre, M., SevillaâPeris, P.: Dirichlet Series and Holomorphic Funcions in High Dimensions, vol. 37 of New Mathematical Monographs. Cambridge University Press, Cambridge (2019)Defant, A., PĂ©rez, A.: Optimal comparison of the p -norms of Dirichlet polynomials. Israel J. Math. 221(2), 837â852 (2017)Defant, A., PĂ©rez, A.: Hardy spaces of vector-valued Dirichlet series. Studia Math. 243(1), 53â78 (2018)Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators, vol. 43 of Cambridge studies in advanced mathematics. Cambridge University Press, Cambridge (1995)Maurizi, B., QueffĂ©lec, H.: Some remarks on the algebra of bounded Dirichlet series. J. Fourier Anal. Appl. 16(5), 676â692 (2010)QueffĂ©lec, H., QueffĂ©lec, M.: Diophantine approximation and Dirichlet series, vol. 2 of HarishâChandra research institute lecture notes. Hindustan Book Agency, New Delhi (2013
The multiplicative property characterizes and norms
We show that norms are characterized as the unique norms which are
both invariant under coordinate permutation and multiplicative with respect to
tensor products. Similarly, the norms are the unique
rearrangement-invariant norms on a probability space such that for every pair of independent random variables. Our
proof relies on Cram\'er's large deviation theorem.Comment: 8 pages, 1 figur
Quantum chaos, random matrix theory, and statistical mechanics in two dimensions - a unified approach
We present a theory where the statistical mechanics for dilute ideal gases
can be derived from random matrix approach. We show the connection of this
approach with Srednicki approach which connects Berry conjecture with
statistical mechanics. We further establish a link between Berry conjecture and
random matrix theory, thus providing a unified edifice for quantum chaos,
random matrix theory, and statistical mechanics. In the course of arguing for
these connections, we observe sum rules associated with the outstanding
counting problem in the theory of braid groups. We are able to show that the
presented approach leads to the second law of thermodynamics.Comment: 23 pages, TeX typ
Estimates for vector valued Dirichlet polynomials
[EN] We estimate the -norm of finite Dirichlet polynomials with coefficients in a Banach space. Our estimates quantify several recent results on Bohr's strips of uniform but non absolute convergence of Dirichlet series in Banach spaces.A. Defant and P. Sevilla-Peris were supported by MICINN Project MTM2011-22417.Defant, A.; Schwarting, U.; Sevilla Peris, P. (2014). Estimates for vector valued Dirichlet polynomials. Monatshefte fïżœr Mathematik. 175(1):89-116. https://doi.org/10.1007/s00605-013-0600-4S891161751Balasubramanian, R., Calado, B., QueffĂ©lec, H.: The Bohr inequality for ordinary Dirichlet series. Studia Math. 175(3), 285â304 (2006)Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203â236 (2002)Bennett, G.: Inclusion mappings between l p spaces. J. Funct. Anal. 13, 20â27 (1973)Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. (2) 32(3), 600â622 (1931)Bohr, H.: Ăber die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichletâschen Reihen â a n n s . Nachr. Ges. Wiss. Göttingen Math. Phys. Kl., Heft 4, 441â488 (1913)Bohr, H.: Ăber die gleichmĂ€Ăige Konvergenz Dirichletscher Reihen. J. Reine Angew. Math. 143, 203â211 (1913)Carl, B.: Absolut- ( p , 1 ) -summierende identische Operatoren von l u in l v . Math. Nachr. 63, 353â360 (1974)Carlson, F.: Contributions Ă la thĂ©orie des sĂ©ries de Dirichlet. Note i. Ark. föâr Mat., Astron. och Fys. 16(18), 1â19 (1922)de la BretĂšche, R.: Sur lâordre de grandeur des polynĂŽmes de Dirichlet. Acta Arith. 134(2), 141â148 (2008)Defant, A., Frerick, L., Ortega-CerdĂ , J., OunaĂŻes, M., Seip, K.: The BohnenblustâHille inequality for homogeneous polynomials is hypercontractive. Ann. Math. (2) 174(1), 485â497 (2011)Defant, A., GarcĂa, D., Maestre, M., PĂ©rez-GarcĂa, D.: Bohrâs strip for vector valued Dirichlet series. Math. Ann. 342(3), 533â555 (2008)Defant, A., GarcĂa, D., Maestre, M., Sevilla-Peris, P.: Bohrâs strips for Dirichlet series in Banach spaces. Funct. Approx. Comment. Math. 44(part 2), 165â189 (2011)Defant, A., Maestre, M., Schwarting, U.: Bohr radii of vector valued holomorphic functions. Adv. Math. 231(5), 2837â2857 (2012)Defant, A., Popa, D., Schwarting, U.: Coordinatewise multiple summing operators in Banach spaces. J. Funct. Anal. 259(1), 220â242 (2010)Defant, A., Sevilla-Peris, P.: Convergence of Dirichlet polynomials in Banach spaces. Trans. Am. Math. Soc. 363(2), 681â697 (2011)Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, vol. 43. Cambridge University Press, Cambridge (1995)Harris, L.A.: Bounds on the derivatives of holomorphic functions of vectors. In: Analyse fonctionnelle et applications (Comptes Rendus Colloq. Analyse, Inst. Mat., Univ. Federal Rio de Janeiro, Rio de Janeiro, 1972), pp. 145â163. ActualitĂ©s Aci. Indust., No. 1367. Hermann, Paris (1975)Hedenmalm, H., Lindqvist, P., Seip, K.: A Hilbert space of Dirichlet series and systems of dilated functions in L 2 ( 0 , 1 ) . Duke Math. J. 86(1), 1â37 (1997)Kahane, J.-P.: Some Random Series of Functions. Cambridge Studies in Advanced Mathematics, vol. 5, 2nd edn. Cambridge University Press, Cambridge (1985)Konyagin, S.V., QueffĂ©lec, H.: The translation 1 2 in the theory of Dirichlet series. Real Anal. Exch. 27(1):155â175 (2001/2002)KwapieĆ, S.: Some remarks on ( p , q ) -absolutely summing operators in l p -spaces. Studia Math. 29, 327â337 (1968)Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes, reprint of the 1991 edn. Classics in Mathematics. Springer, Berlin (2011)Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I. Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92. Springer, Berlin (1977)Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. II, Function Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97. Springer, Berlin (1979)Maurizi, B., QueffĂ©lec, H.: Some remarks on the algebra of bounded Dirichlet series. J. Fourier Anal. Appl. 16, 676â692 (2010)Prachar, K.: Primzahlverteilung. Springer, Berlin (1957)QueffĂ©lec, H.: H. Bohrâs vision of ordinary Dirichlet series; old and new results. J. Anal. 3, 43â60 (1995)Tomczak-Jaegermann, N.: BanachâMazur Distances and Finite-Dimensional Operator Ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38. Longman Scientific & Technical, Harlow (1989
Almost sure-sign convergence of Hardy-type Dirichlet series
[EN] Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series is uniformly a.s.- sign convergent (i.e., converges uniformly for almost all sequences of signs epsilon (n) = +/- 1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space.Supported by CONICET-PIP 11220130100329CO, PICT 2015-2299 and UBACyT 20020130100474BA.
Supported by MICINN MTM2017-83262-C2-1-P.
Supported by MICINN MTM2017-83262-C2-1-P and UPV-SP20120700.Carando, D.; Defant, A.; Sevilla Peris, P. (2018). Almost sure-sign convergence of Hardy-type Dirichlet series. Journal d Analyse MathĂ©matique. 135(1):225-247. https://doi.org/10.1007/s11854-018-0034-yS2252471351A. Aleman, J.-F. Olsen, and E. Saksman, Fourier multipliers for Hardy spaces of Dirichlet series, Int. Math. Res. Not. IMRN 16 (2014), 4368â4378.R. Balasubramanian, B. Calado, and H. QueffĂ©lec, The Bohr inequality for ordinary Dirichlet series Studia Math. 175 (2006), 285â304.F. Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math. 136 (2002), 203â236.F. Bayart, A. Defant, L. Frerick, M. Maestre, and P. Sevilla-Peris, Monomial series expansion of Hp-functions and multipliers ofHp-Dirichlet series, Math. Ann. 368 (2017), 837â876.F. Bayart, D. Pellegrino, and J. B. Seoane-SepĂșlveda, The Bohr radius of the n-dimensional polydisk is equivalent to ( log n ) / n , Adv. Math. 264 (2014), 726â746.F. Bayart, H. QueffĂ©lec, and K. Seip, Approximation numbers of composition operators on Hp spaces of Dirichlet series, Ann. Inst. Fourier (Grenoble) 66 (2016), 551â588.H. F. Bohnenblust and E. Hille. On the absolute convergence of Dirichlet series, Ann. of Math. (2) 32 (1931), 600â622.H. Bohr, Ăber die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichletâschen Reihen â a n n s , Nachr. Ges.Wiss. Göttingen, Math. Phys. Kl., 1913, pp. 441â488.D. Carando, A. Defant, and P. Sevilla-Peris, Bohrâs absolute convergence problem for Hp- Dirichlet series in Banach spaces, Anal. PDE 7 (2014), 513â527.D. Carando, A. Defant, and P. Sevilla-Peris, Some polynomial versions of cotype and applications, J. Funct. Anal. 270 (2016), 68â87.B. J. Cole and T. W. Gamelin, Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. (3) 53 (1986), 112â142.R. de la BretĂšche. Sur lâordre de grandeur des polynĂŽmes de Dirichlet, Acta Arith. 134 (2008), 141â148.A. Defant, L. Frerick, J. Ortega-CerdĂ , M. OunĂ€ies, and K. Seip, The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive, Ann. of Math. (2) 174 (2011), 485â497.A. Defant, D. GarcĂa, M. Maestre, and D. PĂ©rez-GarcĂa, Bohrâs strip for vector valued Dirichlet series, Math. Ann. 342 (2008), 533â555.A. Defant, M. Maestre, and U. Schwarting, Bohr radii of vector valued holomorphic functions, Adv. Math. 231 (2012), 2837â2857.A. Defant and A. PĂ©rez, Hardy spaces of vector-valued Dirichlet series, StudiaMath. (to appear), 2018 DOI: 10.4064/sm170303-26-7.A. Defant, U. Schwarting, and P. Sevilla-Peris, Estimates for vector valued Dirichlet polynomials, Monatsh. Math. 175 (2014), 89â116.J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995.P. Hartman, On Dirichlet series involving random coefficients, Amer. J. Math. 61 (1939), 955â964.H. Hedenmalm, P. Lindqvist, and K. Seip, A Hilbert space of Dirichlet series and systems of dilated functions in L2(0, 1), Duke Math. J. 86 (1997), 1â37.A. Hildebrand, and G. Tenenbaum, Integers without large prime factors, J. Thor. Nombres Bordeaux 5 (1993), 411â484.S. V. Konyagin and H. QueffĂ©lec, The translation 1/2 in the theory of Dirichlet series, Real Anal. Exchange 27 (2001/02) 155â175.J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II, Springer-Verlag, Berlin, 1979.B. Maurizi and H. QueffĂ©lec, Some remarks on the algebra of bounded Dirichlet series, J. Fourier Anal. Appl. 16 (2010), 676â692.H. QueffĂ©lec, H. Bohrâs vision of ordinary Dirichlet series; old and new results, J. Anal. 3 (1995), 43â60.H. QueffĂ©lec and M. QueffĂ©lec, Diophantine Approximation and Dirichlet Series, Hindustan Book Agency, New Delhi, 2013.G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, Cambridge, 1995
Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables
[EN] Let H-infinity be the set of all ordinary Dirichlet series D = Sigma(n) a(n)(n-1) ann-s representing bounded holomorphic functions on the right half plane. A completely multiplicative sequence (b(n)) of complex numbers is said to be an l(1)-multiplier for H-infinity whenever Sigma(n vertical bar)a(n)b(n vertical bar) < infinity for every D is an element of H-infinity. We study the problem of describing such sequences (b(n)) in terms of the asymptotic decay of the subsequence (b(pj)), where p(j) denotes the j th prime number. Given a completely multiplicative sequence b = (b(n)) we prove (among other results): b is an l(1)-multiplier for H-infinity provided vertical bar b(pj)vertical bar < 1 for all j and (lim(n)) over bar 1/log(n) Sigma(n)(j=1) b(p j)*(2) < 1, and conversely, if b is an l(1)-multiplier for H-infinity, then vertical bar b(pj)vertical bar < 1 for all j and (lim(n)) over bar 1/log(n) Sigma(n)(j=1) b(p j)*(2) <= 1 (here b* stands for the decreasing rearrangement of b). Following an ingenious idea of Harald Bohr it turns out that this problem is intimately related with the question of characterizing those sequences z in the infinite dimensional polydisk D-infinity (the open unit ball of l(infinity)) for which every bounded and holomorphic function f on D-infinity has an absolutely convergent monomial series expansion Sigma(alpha) partial derivative alpha f (0)/alpha! z alpha. Moreover, we study analogous problems in Hardy spaces of Dirichlet series and Hardy spaces of functions on the infinite dimensional polytorus T-infinity.The second, fourth and fifth authors were supported by MINECO and FEDER Project MTM2014-57838-C2-2-P. The fourth author was also supported by PrometeoII/2013/013. The fifth author was also supported by project SP-UPV20120700.Bayart, F.; Defant, A.; Frerick, L.; Maestre, M.; Sevilla Peris, P. (2017). Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables. Mathematische Annalen. 368(1-2):837-876. https://doi.org/10.1007/s00208-016-1511-1S8378763681-2Aleman, A., Olsen, J.-F., Saksman, E.: Fatou and brother Riesz theorems in the infinite-dimensional polydisc. arXiv:1512.01509Balasubramanian, R., Calado, B., QueffĂ©lec, H.: The Bohr inequality for ordinary Dirichlet series. Studia Math. 175(3), 285â304 (2006)Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203â236 (2002)Bayart, F., Pellegrino, D., Seoane-SepĂșlveda, J.B.: The Bohr radius of the n -dimensional polydisk is equivalent to ( log n ) / n . Adv. Math. 264:726â746 (2014)Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. 32(3), 600â622 (1931)Bohr, H.: Ăber die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichletâschen Reihen â a n n s . Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 441â488 (1913)Bohr, H.: Ăber die gleichmĂ€Ăige Konvergenz Dirichletscher Reihen. J. Reine Angew. Math. 143, 203â211 (1913)Cole, B.J., Gamelin., T.W.: Representing measures and Hardy spaces for the infinite polydisk algebra. Proc. Lond. Math. Soc. 53(1), 112â142 (1986)Davie, A.M., Gamelin, T.W.: A theorem on polynomial-star approximation. Proc. Am. Math. Soc. 106(2), 351â356 (1989)de la BretĂšche, R.: Sur lâordre de grandeur des polynĂŽmes de Dirichlet. Acta Arith. 134(2), 141â148 (2008)Defant, A., Frerick, L., Ortega-CerdĂ , J., OunaĂŻes, M., Seip, K.: The BohnenblustâHille inequality for homogeneous polynomials is hypercontractive. Ann. Math. 174(1), 485â497 (2011)Defant, A., GarcĂa, D., Maestre, M.: New strips of convergence for Dirichlet series. Publ. Mat. 54(2), 369â388 (2010)Defant, A., GarcĂa, D., Maestre, M., PĂ©rez-GarcĂa, D.: Bohrâs strip for vector valued Dirichlet series. Math. Ann. 342(3), 533â555 (2008)Defant, A., Maestre, M., Prengel, C.: Domains of convergence for monomial expansions of holomorphic functions in infinitely many variables. J. Reine Angew. Math. 634, 13â49 (2009)Dineen, S.: Complex Analysis on Infinite-dimensional Spaces. Springer Monographs in Mathematics. Springer-Verlag London Ltd, London (1999)Floret, K.: Natural norms on symmetric tensor products of normed spaces. Note Mat. 17(153â188), 1997 (1999)Harris, L. A.: Bounds on the derivatives of holomorphic functions of vectors. In: Analyse fonctionnelle et applications (Comptes Rendus Colloq. Analyse, Inst. Mat., Univ. Federal Rio de Janeiro, Rio de Janeiro, 1972), pp. 145â163. ActualitĂ©s Aci. Indust., No. 1367. Hermann, Paris (1975)Hedenmalm, H., Lindqvist, P., Seip, K.: A Hilbert space of Dirichlet series and systems of dilated functions in L 2 ( 0 , 1 ) . Duke Math. J. 86(1), 1â37 (1997)Helson, H., Lowdenslager, D.: Prediction theory and Fourier series in several variables. Acta Math. 99, 165â202 (1958)Hibert, D.: Gesammelte Abhandlungen (Band 3). Verlag von Julius Springer, Berlin (1935)Hilbert, D.: Wesen und Ziele einer Analysis der unendlichvielen unabhĂ€ngigen Variablen. Rend. del Circolo Mat. di Palermo 27, 59â74 (1909)Kahane, J.-P.: Some Random Series of Functions, Volume 5 of Cambridge Studies in Advanced Mathematics, second edn. Cambridge University Press, Cambridge (1985)Konyagin, S.V., QueffĂ©lec, H.: The translation 1 2 in the theory of Dirichlet series. Real Anal. Exchange 27(1):155â175 (2001/2002)Maurizi, B., QueffĂ©lec, H.: Some remarks on the algebra of bounded Dirichlet series. J. Fourier Anal. Appl. 16(5), 676â692 (2010)QueffĂ©lec, H.: H. Bohrâs vision of ordinary Dirichlet series; old and new results. J. Anal. 3, 43â60 (1995)QueffĂ©lec, H., QueffĂ©lec, M.: Diophantine Approximation and Dirichlet Series. HRI Lecture Notes Series, New Delhi (2013)Rudin, W.: Function Theory in Polydisks. W. A. Benjamin Inc, New York (1969)Toeplitz, O.: Ăber eine bei den Dirichletschen Reihen auftretende Aufgabe aus der Theorie der Potenzreihen von unendlichvielen VerĂ€nderlichen. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, pp. 417â432 (1913)Weissler, F.B.: Logarithmic Sobolev inequalities and hypercontractive estimates on the circle. J. Funct. Anal. 37(2), 218â234 (1980)Wojtaszczyk, P.: Banach Spaces for Analysts, Volume 25 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1991
There exist multilinear Bohnenblust-Hille constants (Cn)n=1(infinity) with limn ->infinity(Cn+1-Cn)=0
The n-linear Bohnenblust-Hille inequality asserts that there is a constant C-n is an element of [1, infinity) such that the l(2n/n+1)-norm of (U(e(i1), ..., e(in)))(i1, ...,in=1)(N) is bounded above by C-n times the supremum norm of U, for any n-linear form U :C-N x ... x C-N -> C and N is an element of N (the same holds for real scalars). We prove what we call Fundamental Lemma, which brings new information on the optimal constants, (K-n)(n=1)(infinity) for both real and complex scalars. For instance, Kn+1 - K-n = 2. We study the interplay between the Kahane-Salem-Zygmund and the Bohnenblust-Hille (polynomial and multilinear) inequalities and provide estimates for Bohnenblust-Hille-type inequality constants for any exponent q is an element of [2n/n+1, infinity). (C) 2012 Elsevier Inc. All rights reserved
- âŠ