83 research outputs found

    Myocarditis, disseminated infection, and early viral persistence following experimental coxsackievirus B infection of cynomolgus monkeys.

    Get PDF
    Coxsackievirus B (CVB) infection is a common cause of acute viral myocarditis. The clinical presentation of myocarditis caused by this enterovirus is highly variable, ranging from mildly symptoms to complete hemodynamic collapse. These variations in initial symptoms and in the immediate and long term outcomes of this disease have impeded development of effective treatment strategies. Nine cynomolgus monkeys were inoculated with myocarditic strains of CVB. Virological studies performed up to 28 days post-inoculation demonstrated the development of neutralizing antibody in all animals, and the presence of CVB in plasma. High dose intravenous inoculation (n = 2) resulted in severe disseminated disease, while low dose intravenous (n = 6) or oral infection (1 animal) resulted in clinically unapparent infection. Transient, minor, echocardiographic abnormalities were noted in several animals, but no animals displayed signs of significant acute cardiac failure. Although viremia rapidly resolved, signs of myocardial inflammation and injury were observed in all animals at the time of necropsy, and CVB was detected in postmortem myocardial specimens up to 28 days PI. This non-human primate system replicates many features of illness in acute coxsackievirus myocarditis and demonstrates that myocardial involvement may be common in enteroviral infection; it may provide a model system for testing of treatment strategies for enteroviral infections and acute coxsackievirus myocarditis

    SARS-CoV-2 infection of the pancreas promotes thrombofibrosis and is associated with new-onset diabetes

    Get PDF
    Evidence suggests an association between severe acute respiratory syndrome-cornavirus-2 (SARS-CoV-2) infection and the occurrence of new-onset diabetes. We examined pancreatic expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), the cell entry factors for SARS-CoV-2, using publicly available single-cell RNA sequencing data sets, and pancreatic tissue from control male and female nonhuman primates (NHPs) and humans. We also examined SARS-CoV-2 immunolocalization in pancreatic cells of SARS-CoV-2-infected NHPs and patients who had died from coronavirus disease 2019 (COVID-19). We report expression of ACE2 in pancreatic islet, ductal, and endothelial cells in NHPs and humans. In pancreata from SARS-CoV-2-infected NHPs and COVID-19 patients, SARS-CoV-2 infected ductal, endothelial, and islet cells. These pancreata also exhibited generalized fibrosis associated with multiple vascular thrombi. Two out of 8 NHPs developed new-onset diabetes following SARS-CoV-2 infection. Two out of 5 COVID-19 patients exhibited new-onset diabetes at admission. These results suggest that SARS-CoV-2 infection of the pancreas may promote acute and especially chronic pancreatic dysfunction that could potentially lead to new-onset diabetes

    Miscarriage and stillbirth following maternal Zika virus infection in nonhuman primates.

    Get PDF
    Zika virus (ZIKV) infection is associated with congenital defects and pregnancy loss. Here, we found that 26% of nonhuman primates infected with Asian/American ZIKV in early gestation experienced fetal demise later in pregnancy despite showing few clinical signs of infection. Pregnancy loss due to asymptomatic ZIKV infection may therefore be a common but under-recognized adverse outcome related to maternal ZIKV infection

    Dapagliflozin in HFrEF Patients Treated With Mineralocorticoid Receptor Antagonists An Analysis of DAPA-HF

    Get PDF
    OBJECTIVES The purpose of this study was to assess the efficacy and safety of dapagliflozin in patients taking or not taking an mineralocorticoid receptor antagonist (MRA) at baseline in the DAPA-HF (Dapagliflozin And Prevention of Adverse outcomes in Heart Failure) trial. BACKGROUND MRAs and sodium glucose co-transporter 2 inhibitors each have diuretic activity, lower blood pressure, and reduce glomerular filtration rate (GFR). Therefore, it is important to investigate the safety, as well as efficacy, of their combination. METHODS A total of 4,744 patients with heart failure with reduced ejection fraction (HFrEF) were randomized to placebo or dapagliflozin 10mg daily. The efficacy of dapagliflozin on the primary composite outcome (cardiovascular death or episode of worsening heart failure) and its components was examined according to MRA use, as were predefined safety outcomes. RESULTS A total of 3,370 patients (71%) were treated with an MRA and they were younger (65 vs. 69 years of age), less often from North America (9% vs. 26%), had worse New York Heart Association functional class (35% vs. 25% in class III/ IV), lower left ventricular ejection fraction (30.7% vs. 31.9%) and systolic blood pressure (120.3 vs. 125.5 mm Hg), but higher estimated GFR (67.1 vs. 62.6 ml/min/1.73 m(2)), than patients not taking an MRA. The benefit of dapagliflozin compared with placebo was similar in patients taking or not taking an MRA: hazard ratio: 0.74 (95% confidence interval [CI]: 0.63 to 0.87) versus 0.74 (95% CI: 0.57 to 0.95), respectively, for the primary endpoint (p value for interaction - 0.97); similar findings were observed for secondary endpoints. In both MRA subgroups, safety outcomes were similar in patients randomized to dapagliflozin or placebo. CONCLUSIONS Dapagliflozin was similarly efficacious and safe in patients with HFrEF taking or not taking an MRA, supporting the use of both drugs together. (Study to Evaluate the Effect of Dapagliflozin on the Incidence of Worsening Heart Failure or Cardiovascular Death in Patients With Chronic Heart Failure [DAPA-HF]; NCT03036124) (C)2021 Published by Elsevier on behalf of the American College of Cardiology Foundation

    Voluntary exercise-induced changes in β2-adrenoceptor signalling in rat ventricular myocytes

    Get PDF
    Regular exercise is beneficial to cardiovascular health. We tested whether mild voluntary exercise training modifies key myocardial parameters [ventricular mass, intracellular calcium ([Ca2+]i) handling and the response to β-adrenoceptor (β-AR) stimulation] in a manner distinct from that reported for beneficial, intensive training and pathological hypertrophic stimuli. Female rats performed voluntary wheel-running exercise for 6–7 weeks. The mRNA expression of target proteins was measured in left ventricular tissue using real-time reverse transcriptase-polymerase chain reaction. Simultaneous measurement of cell shortening and [Ca2+]i transients were made in single left ventricular myocytes and the inotropic response to β1- and β2-AR stimulation was measured. Voluntary exercise training resulted in cardiac hypertrophy, the heart weight to body weight ratio being significantly greater in trained compared with sedentary animals. However, voluntary exercise caused no significant alteration in the size or time course of myocyte shortening and [Ca2+]i transients or in the mRNA levels of key proteins that regulate Ca2+ handling. The positive inotropic response to β1-AR stimulation and the level of β1-AR mRNA were unaltered by voluntary exercise but both mRNA levels and inotropic response to β2-AR stimulation were significantly reduced in trained animals. The β2-AR inotropic response was restored by exposure to pertussis toxin. We propose that in contrast to pathological stimuli and to beneficial, intense exercise training, modulation of Ca2+ handling is not a major adaptive mechanism in the response to mild voluntary exercise. In addition, and in a reversal of the situation seen in heart failure, voluntary exercise training maintains the β1-AR response but reduces the β2-AR response. Therefore, although voluntary exercise induces cardiac hypertrophy, there are distinct differences between its effects on key myocardial regulatory mechanisms and those of hypertrophic stimuli that eventually cause cardiac decompensation

    Effect of Dapagliflozin on Outpatient Worsening of Patients With Heart Failure and Reduced Ejection Fraction A Prespecified Analysis of DAPA-HF

    Get PDF
    BACKGROUND: In the DAPA-HF trial (Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure), dapagliflozin, added to guideline-recommended therapies, reduced the risk of mortality and heart failure (HF) hospitalization. We examined the frequency and significance of episodes of outpatient HF worsening, requiring the augmentation of oral therapy, and the effects of dapagliflozin on these additional events. METHODS: Patients in New York Heart Association functional class II to IV, with a left ventricular ejection fraction RESULTS: Overall, 36% more patients experienced the expanded, in comparison with the primary, composite outcome. In the placebo group, 684 of 2371 (28.8%) patients and, in the dapagliflozin group, 527 of 2373 (22.2%) participants experienced the expanded outcome (hazard ratio, 0.73 [95% CI, 0.65-0.82]; P CONCLUSION: In DAPA-HF, outpatient episodes of HF worsening were common, were of prognostic importance, and were reduced by dapagliflozin

    Allometry and Ecology of the Bilaterian Gut Microbiome.

    Get PDF
    Classical ecology provides principles for construction and function of biological communities, but to what extent these apply to the animal-associated microbiota is just beginning to be assessed. Here, we investigated the influence of several well-known ecological principles on animal-associated microbiota by characterizing gut microbial specimens from bilaterally symmetrical animals (Bilateria) ranging from flies to whales. A rigorously vetted sample set containing 265 specimens from 64 species was assembled. Bacterial lineages were characterized by 16S rRNA gene sequencing. Previously published samples were also compared, allowing analysis of over 1,098 samples in total. A restricted number of bacterial phyla was found to account for the great majority of gut colonists. Gut microbial composition was associated with host phylogeny and diet. We identified numerous gut bacterial 16S rRNA gene sequences that diverged deeply from previously studied taxa, identifying opportunities to discover new bacterial types. The number of bacterial lineages per gut sample was positively associated with animal mass, paralleling known species-area relationships from island biogeography and implicating body size as a determinant of community stability and niche complexity. Samples from larger animals harbored greater numbers of anaerobic communities, specifying a mechanism for generating more-complex microbial environments. Predictions for species/abundance relationships from models of neutral colonization did not match the data set, pointing to alternative mechanisms such as selection of specific colonists by environmental niche. Taken together, the data suggest that niche complexity increases with gut size and that niche selection forces dominate gut community construction.IMPORTANCEThe intestinal microbiome of animals is essential for health, contributing to digestion of foods, proper immune development, inhibition of pathogen colonization, and catabolism of xenobiotic compounds. How these communities assemble and persist is just beginning to be investigated. Here we interrogated a set of gut samples from a wide range of animals to investigate the roles of selection and random processes in microbial community construction. We show that the numbers of bacterial species increased with the weight of host organisms, paralleling findings from studies of island biogeography. Communities in larger organisms tended to be more anaerobic, suggesting one mechanism for niche diversification. Nonselective processes enable specific predictions for community structure, but our samples did not match the predictions of the neutral model. Thus, these findings highlight the importance of niche selection in community construction and suggest mechanisms of niche diversification

    Fetal Demise and Failed Antibody Therapy During Zika Virus Infection of Pregnant Macaques

    Get PDF
    Zika virus (ZIKV) infection of pregnant women is associated with pathologic complications of fetal development. Here, we infect pregnant rhesus macaques (Macaca mulatta) with a minimally passaged ZIKV isolate from Rio de Janeiro, where a high rate of fetal development complications was observed. The infection of pregnant macaques with this virus results in maternal viremia, virus crossing into the amniotic fluid (AF), and in utero fetal deaths. We also treated three additional ZIKV-infected pregnant macaques with a cocktail of ZIKV-neutralizing human monoclonal antibodies (nmAbs) at peak viremia. While the nmAbs can be effective in clearing the virus from the maternal sera of treated monkeys, it is not sufficient to clear ZIKV from AF. Our report suggests that ZIKV from Brazil causes fetal demise in non-human primates (NHPs) without additional mutations or confounding co-factors. Treatment with a neutralizing anti-ZIKV nmAb cocktail is insufficient to fully stop vertical transmission

    Medical imaging of pulmonary disease in SARS-CoV-2-exposed non-human primates

    Get PDF
    Chest X-ray (CXR), computed tomography (CT), and positron emission tomography-computed tomography (PET-CT) are noninvasive imaging techniques widely used in human and veterinary pulmonary research and medicine. These techniques have recently been applied in studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-exposed non-human primates (NHPs) to complement virological assessments with meaningful translational readouts of lung disease. Our review of the literature indicates that medical imaging of SARS-CoV-2-exposed NHPs enables high-resolution qualitative and quantitative characterization of disease otherwise clinically invisible and potentially provides user-independent and unbiased evaluation of medical countermeasures (MCMs). However, we also found high variability in image acquisition and analysis protocols among studies. These findings uncover an urgent need to improve standardization and ensure direct comparability across studies
    • …
    corecore