181 research outputs found

    Symbiont 'bleaching' in planktic foraminifera during the Middle Eocene Climatic Optimum

    Get PDF
    Many genera of modern planktic foraminifera are adapted to nutrient-poor (oligotrophic) surface waters by hosting photosynthetic symbionts, but it is unknown how they will respond to future changes in ocean temperature and acidity. Here we show that ca. 40 Ma, some fossil photosymbiont-bearing planktic foraminifera were temporarily 'bleached' of their symbionts coincident with transient global warming during the Middle Eocene Climatic Optimum (MECO). At Ocean Drilling Program (ODP) Sites 748 and 1051 (Southern Ocean and mid-latitude North Atlantic, respectively), the typically positive relationship between the size of photosymbiont-bearing planktic foraminifer tests and their carbon isotope ratios (ÎŽ13C) was temporarily reduced for ∌100 k.y. during the peak of the MECO. At the same time, the typically photosymbiont-bearing planktic foraminifera Acarinina suffered transient reductions in test size and relative abundance, indicating ecological stress. The coincidence of minimum ÎŽ18O values and reduction in test size–ή13C gradients suggests a link between increased sea-surface temperatures and bleaching during the MECO, although changes in pH and nutrient availability may also have played a role. Our findings show that host-photosymbiont interactions are not constant through geological time, with implications for both the evolution of trophic strategies in marine plankton and the reliability of geochemical proxy records generated from symbiont-bearing planktic foraminifera

    Kinetics of the Multiferroic Switching in MnWO4_4

    Get PDF
    The time dependence of switching multiferroic domains in MnWO4_4 has been studied by time-resolved polarized neutron diffraction. Inverting an external electric field inverts the chiral magnetic component within rise times ranging between a few and some tens of milliseconds in perfect agreement with macroscopic techniques. There is no evidence for any faster process in the inversion of the chiral magnetic structure. The time dependence is well described by a temperature-dependent rise time suggesting a well-defined process of domain reversion. As expected, the rise times decrease when heating towards the upper boundary of the ferroelectric phase. However, switching also becomes faster upon cooling towards the lower boundary, which is associated with a first-order phase transition

    Mechanical and optical properties of Lu2O3 host-ceramics for Ln(3+) lasants

    Get PDF
    Micro-hardness and fracture toughness, as well as linear optical properties (full transmission spectrum and refractive index dispersion) of fine-grained Lu2O3 ceramics fabricated by VSN method are presented

    Revisiting the Geographical Extent of Exceptional Warmth in the Early Paleogene Southern Ocean

    Get PDF
    To assess zonal temperature and biogeographical patterns in the Southern Ocean during the Paleogene, we present new multi-proxy air- and sea-surface temperature data for the latest Paleocene (∌57–56 Ma) and the Paleocene-Eocene Thermal Maximum (PETM; ∌56 Ma) from the northern margin of the Australo-Antarctic Gulf (AAG). The various proxy data sets document the well-known late Paleocene warming and, superimposed, two transient late Paleocene pre-cursor warming events, hundreds of kyr prior to the PETM. Remarkably, temperature reconstructions for the AAG and southwest Pacific during the latest Paleocene, PETM and Early Eocene Climatic Optimum (∌53–49 Ma) show similar trends as well as similar absolute temperatures east and west of the closed Tasmanian Gateway. Our data imply that the exceptional warmth as recorded by previous studies for the southwest Pacific extended westward into the AAG. This contrasts with modeling-derived circulation and temperature patterns. We suggest that simulations of ocean circulation underestimate heat transport in the southwest Pacific due to insufficient resolution, not allowing for mesoscale eddy-related heat transport. We argue for a systematic approach to tackle model and proxy biases that may occur in marginal marine settings and non-analog high-latitude climates to assess the temperature reconstructions

    Chronostratigraphic Framework for the IODP Expedition 318 Cores from the Wilkes Land Margin: Constraints for Paleoceanographic Reconstruction

    Get PDF
    [1] The Integrated Ocean Drilling Program Expedition 318 to the Wilkes Land margin of Antarctica recovered a sedimentary succession ranging in age from lower Eocene to the Holocene. Excellent stratigraphic control is key to understanding the timing of paleoceanographic events through critical climate intervals. Drill sites recovered the lower and middle Eocene, nearly the entire Oligocene, the Miocene from about 17 Ma, the entire Pliocene and much of the Pleistocene. The paleomagnetic properties are generally suitable for magnetostratigraphic interpretation, with well‐behaved demagnetization diagrams, uniform distribution of declinations, and a clear separation into two inclination modes. Although the sequences were discontinuously recovered with many gaps due to coring, and there are hiatuses from sedimentary and tectonic processes, the magnetostratigraphic patterns are in general readily interpretable. Our interpretations are integrated with the diatom, radiolarian, calcareous nannofossils and dinoflagellate cyst (dinocyst) biostratigraphy. The magnetostratigraphy significantly improves the resolution of the chronostratigraphy, particularly in intervals with poor biostratigraphic control. However, Southern Ocean records with reliable magnetostratigraphies are notably scarce, and the data reported here provide an opportunity for improved calibration of the biostratigraphic records. In particular, we provide a rare magnetostratigraphic calibration for dinocyst biostratigraphy in the Paleogene and a substantially improved diatom calibration for the Pliocene. This paper presents the stratigraphic framework for future paleoceanographic proxy records which are being developed for the Wilkes Land margin cores. It further provides tight constraints on the duration of regional hiatuses inferred from seismic surveys of the region

    Ice sheet–free West Antarctica during peak early Oligocene glaciation

    Get PDF
    One of Earth’s most fundamental climate shifts – the greenhouse-icehouse transition 34 Ma ago – initiated Antarctic ice-sheet build-up, influencing global climate until today. However, the extent of the ice sheet during the Early Oligocene Glacial Maximum (~33.7–33.2 Ma) that immediately followed this transition, a critical knowledge gap for assessing feedbacks between permanently glaciated areas and early Cenozoic global climate reorganization, is uncertain. Here, we present shallow-marine drilling data constraining earliest Oligocene environmental conditions on West Antarctica’s Pacific margin – a key region for understanding Antarctic ice sheet-evolution. These data indicate a cool-temperate environment, with mild ocean and air temperatures preventing West Antarctic Ice Sheet formation. Climate-ice sheet modeling corroborates a highly asymmetric Antarctic ice sheet, thereby revealing its differential regional response to past and future climatic change

    Expedition 392 summary

    Get PDF
    During International Ocean Discovery Program Expedition 392, three sites were drilled on the Agulhas Plateau and one site was drilled in the Transkei Basin in the Southwest Indian Ocean. This region was positioned at paleolatitudes of ~53°–61°S during the Late Cretaceous (van Hinsbergen et al., 2015) (100–66 Ma) and within the new and evolving gateway between the South Atlantic, Southern Ocean, and southern Indian Ocean basins. Recovery of basement rocks and sedimentary sequences from the Agulhas Plateau sites and a thick sedimentary sequence in the Transkei Basin provides a wealth of new data to (1) determine the nature, origin, and bathymetric evolution of the Agulhas Plateau; (2) significantly advance the understanding of how Cretaceous temperatures, ocean circulation, and sedimentation patterns evolved as CO2 levels rose and fell and the breakup of Gondwana progressed; (3) document long- and short-term paleoceanographic variability through the Late Cretaceous and Paleogene; and (4) investigate geochemical interactions between igneous rocks, sediments, and pore waters through the life cycle of a large igneous province (LIP). Importantly, postcruise analysis of Expedition 392 drill cores will allow testing of competing hypotheses concerning Agulhas Plateau LIP formation and the role of deep ocean circulation changes through southern gateways in influencing Late Cretaceous–early Paleogene climate evolution

    Relative sea-level rise around East Antarctica during Oligocene glaciation

    Get PDF
    During the middle and late Eocene (∌48-34 Myr ago), the Earth's climate cooled and an ice sheet built up on Antarctica. The stepwise expansion of ice on Antarcticainduced crustal deformation and gravitational perturbations around the continent. Close to the ice sheet, sea level rosedespite an overall reduction in the mass of the ocean caused by the transfer of water to the ice sheet. Here we identify the crustal response to ice-sheet growth by forcing a glacial-hydro isostatic adjustment model with an Antarctic ice-sheet model. We find that the shelf areas around East Antarctica first shoaled as upper mantle material upwelled and a peripheral forebulge developed. The inner shelf subsequently subsided as lithosphere flexure extended outwards from the ice-sheet margins. Consequently the coasts experienced a progressive relative sea-level rise. Our analysis of sediment cores from the vicinity of the Antarctic ice sheet are in agreement with the spatial patterns of relative sea-level change indicated by our simulations. Our results are consistent with the suggestion that near-field processes such as local sea-level change influence the equilibrium state obtained by an icesheet grounding line
    • 

    corecore