213 research outputs found

    Symbiont 'bleaching' in planktic foraminifera during the Middle Eocene Climatic Optimum

    Get PDF
    Many genera of modern planktic foraminifera are adapted to nutrient-poor (oligotrophic) surface waters by hosting photosynthetic symbionts, but it is unknown how they will respond to future changes in ocean temperature and acidity. Here we show that ca. 40 Ma, some fossil photosymbiont-bearing planktic foraminifera were temporarily 'bleached' of their symbionts coincident with transient global warming during the Middle Eocene Climatic Optimum (MECO). At Ocean Drilling Program (ODP) Sites 748 and 1051 (Southern Ocean and mid-latitude North Atlantic, respectively), the typically positive relationship between the size of photosymbiont-bearing planktic foraminifer tests and their carbon isotope ratios (δ13C) was temporarily reduced for ∼100 k.y. during the peak of the MECO. At the same time, the typically photosymbiont-bearing planktic foraminifera Acarinina suffered transient reductions in test size and relative abundance, indicating ecological stress. The coincidence of minimum δ18O values and reduction in test size–δ13C gradients suggests a link between increased sea-surface temperatures and bleaching during the MECO, although changes in pH and nutrient availability may also have played a role. Our findings show that host-photosymbiont interactions are not constant through geological time, with implications for both the evolution of trophic strategies in marine plankton and the reliability of geochemical proxy records generated from symbiont-bearing planktic foraminifera

    North Atlantic evidence for a for a unipolar icehouse climate state at the Eocene-Oligocene Transition

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record.Earth’s climate transitioned from a warm unglaciated state to a colder glaciated ‘icehouse’ state during the Cenozoic. Extensive ice sheets were first sustained on Antarctica at the Eocene-Oligocene Transition (EOT, ~34 Ma), but there is intense debate over whether Northern Hemisphere ice sheets developed simultaneously at this time, or tens of millions of years later. Here we report on EOT-age sediments that contain detrital sand from Integrated Ocean Drilling Program (IODP) Sites U1406 and U1411 on the Newfoundland margin. These sites are ideally located to test competing hypotheses of the extent of Arctic glaciation, being situated in the North Atlantic’s 'iceberg alley' where icebergs, calved from both the Greenland Ice Sheet today, and the Laurentide Ice Sheet during the Pleistocene, are concentrated by the Labrador Current and deposit continentally-derived detritus. Here we show that detrital sand grains present in these EOT-aged sediments from the Newfoundland margin, initially interpreted to represent ice rafting, were sourced from the mid-latitudes of North America. We find that these grains were transported to the western North Atlantic by fluvial and downslope processes, not icebergs, and were subsequently reworked and deposited by deep-water contour currents on the Newfoundland margin. Our findings are inconsistent with the presence of extensive ice sheets on southern and western Greenland, and the northeastern Canadian Arctic. This contradicts extensive bipolar glaciation at the EOT. The unipolar icehouse arose because of contrasting latitudinal continental configurations at the poles, requiring more intense Cenozoic climatic deterioration to trigger extensive Northern Hemisphere glaciation.Royal Societ

    Adhesive/Dentin Interface: The Weak Link in the Composite Restoration

    Get PDF
    Results from clinical studies suggest that more than half of the 166 million dental restorations that were placed in the United States in 2005 were replacements for failed restorations. This emphasis on replacement therapy is expected to grow as dentists use composite as opposed to dental amalgam to restore moderate to large posterior lesions. Composite restorations have higher failure rates, more recurrent caries, and increased frequency of replacement as compared to amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and premature failure. Under in vivo conditions the bond formed at the adhesive/dentin interface can be the first defense against these noxious, damaging substances. The intent of this article is to review structural aspects of the clinical substrate that impact bond formation at the adhesive/dentin interface; to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface

    Revisiting the Geographical Extent of Exceptional Warmth in the Early Paleogene Southern Ocean

    Get PDF
    To assess zonal temperature and biogeographical patterns in the Southern Ocean during the Paleogene, we present new multi-proxy air- and sea-surface temperature data for the latest Paleocene (∼57–56 Ma) and the Paleocene-Eocene Thermal Maximum (PETM; ∼56 Ma) from the northern margin of the Australo-Antarctic Gulf (AAG). The various proxy data sets document the well-known late Paleocene warming and, superimposed, two transient late Paleocene pre-cursor warming events, hundreds of kyr prior to the PETM. Remarkably, temperature reconstructions for the AAG and southwest Pacific during the latest Paleocene, PETM and Early Eocene Climatic Optimum (∼53–49 Ma) show similar trends as well as similar absolute temperatures east and west of the closed Tasmanian Gateway. Our data imply that the exceptional warmth as recorded by previous studies for the southwest Pacific extended westward into the AAG. This contrasts with modeling-derived circulation and temperature patterns. We suggest that simulations of ocean circulation underestimate heat transport in the southwest Pacific due to insufficient resolution, not allowing for mesoscale eddy-related heat transport. We argue for a systematic approach to tackle model and proxy biases that may occur in marginal marine settings and non-analog high-latitude climates to assess the temperature reconstructions

    Evidence for a highly dynamic West Antarctic Ice Sheet during the Pliocene

    Get PDF
    Major ice loss in the Amundsen Sea sector of the West Antarctic Ice Sheet (WAIS) is hypothesized to have triggered ice sheet collapses during past warm periods such as those in the Pliocene. International Ocean Discovery Program (IODP) Expedition 379 recovered continuous late Miocene to Holocene sediments from a sediment drift on the continental rise, allowing assessment of sedimentation processes in response to climate cycles and trends since the late Miocene. Via seismic correlation to the shelf, we interpret massive prograding sequences that extended the outer shelf by 80 km during the Pliocene through frequent advances of grounded ice. Buried grounding zone wedges indicate prolonged periods of ice-sheet retreat, or even collapse, during an extended mid-Pliocene warm period from ∼4.2‒3.2 Ma inferred from Expedition 379 records. These results indicate that the WAIS was highly dynamic during the Pliocene and major retreat events may have occurred along the Amundsen Sea margin

    Relative sea-level rise around East Antarctica during Oligocene glaciation

    Get PDF
    During the middle and late Eocene (∼48-34 Myr ago), the Earth's climate cooled and an ice sheet built up on Antarctica. The stepwise expansion of ice on Antarcticainduced crustal deformation and gravitational perturbations around the continent. Close to the ice sheet, sea level rosedespite an overall reduction in the mass of the ocean caused by the transfer of water to the ice sheet. Here we identify the crustal response to ice-sheet growth by forcing a glacial-hydro isostatic adjustment model with an Antarctic ice-sheet model. We find that the shelf areas around East Antarctica first shoaled as upper mantle material upwelled and a peripheral forebulge developed. The inner shelf subsequently subsided as lithosphere flexure extended outwards from the ice-sheet margins. Consequently the coasts experienced a progressive relative sea-level rise. Our analysis of sediment cores from the vicinity of the Antarctic ice sheet are in agreement with the spatial patterns of relative sea-level change indicated by our simulations. Our results are consistent with the suggestion that near-field processes such as local sea-level change influence the equilibrium state obtained by an icesheet grounding line

    Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate

    Get PDF
    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago)1, was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period2–4. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500–3,000 parts per million5–7, and in the absence of tighter constraints carbon–climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments8–11 to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ11Β) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates6. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene12. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period13, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene14. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed2–4, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the canonical range (1.5 to 4.5 degrees Celsius15), indicating that a large fraction of the warmth of the early Eocene greenhouse was driven by increased CO2 concentrations, and that climate sensitivity was relatively constant throughout this period

    Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse

    Get PDF
    Despite recent advances, the link between the evolution of atmospheric CO2 and climate during the Eocene greenhouse remains uncertain. In particular, modelling studies suggest that in order to achieve the global warmth that characterised the early Eocene, warmer climates must be more sensitive to CO2 forcing than colder climates. Here, we test this assertion in the geological record by combining a new high-resolution boron isotope-based CO2 record with novel estimates of Global Mean Temperature. We find that Equilibrium Climate Sensitivity (ECS) was indeed higher during the warmest intervals of the Eocene, agreeing well with recent model simulations, and declined through the Eocene as global climate cooled. These observations indicate that the canonical IPCC range of ECS (1.5 to 4.5 °C per doubling) is unlikely to be appropriate for high-CO2 warm climates of the past, and the state dependency of ECS may play an increasingly important role in determining the state of future climate as the Earth continues to warm

    Deep water inflow slowed offshore expansion of the West Antarctic Ice Sheet at the Eocene-Oligocene transition

    Get PDF
    The stability of the West Antarctic Ice Sheet is threatened by the incursion of warm Circumpolar Deepwater which flows southwards via cross-shelf troughs towards the coast there melting ice shelves. However, the onset of this oceanic forcing on the development and evolution of the West Antarctic Ice Sheet remains poorly understood. Here, we use single- and multichannel seismic reflection profiles to investigate the architecture of a sediment body on the shelf of the Amundsen Sea Embayment. We estimate the formation age of this sediment body to be around the Eocene-Oligocene Transition and find that it possesses the geometry and depositional pattern of a plastered sediment drift. We suggest this indicates a southward inflow of deep water which probably supplied heat and, thus, prevented West Antarctic Ice Sheet advance beyond the coast at this time. We conclude that the West Antarctic Ice Sheet has likely experienced a strong oceanic influence on its dynamics since its initial formation
    corecore