15 research outputs found

    Lineage Reconstruction of In Vitro Identified Antigen-Specific Autoreactive B Cells from Adaptive Immune Receptor Repertoires

    Get PDF
    The emergence, survival, growth and maintenance of autoreactive (AR) B-cell clones, the hallmark of humoral autoimmunity, leave their footprints in B-cell receptor repertoires. Collecting IgH sequences related to polyreactive (PR) ones from adaptive immune receptor repertoire (AIRR) datasets make the reconstruction and analysis of PR/AR B-cell lineages possible. We developed a computational approach, named ImmChainTracer, to extract members and to visualize clonal relationships of such B-cell lineages. Our approach was successfully applied on the IgH repertoires of patients suffering from monogenic hypomorphic RAG1 and 2 deficiency (pRD) or polygenic systemic lupus erythematosus (SLE) autoimmune diseases to identify relatives of AR IgH sequences and to track their fate in AIRRs. Signs of clonal expansion, affinity maturation and class-switching events in PR/AR and non-PR/AR B-cell lineages were revealed. An extension of our method towards B-cell expansion caused by any trigger (e.g., infection, vaccination or antibody development) may provide deeper insight into antigen specific B-lymphogenesis

    Familial Immune Thrombocytopenia Associated With a Novel Variant in IKZF1

    Get PDF
    We report a novel variant in IKZF1 associated with IKAROS haploinsufficiency in a patient with familial immune thrombocytopenia (ITP). IKAROS, encoded by the IKZF1 gene, is a hematopoietic zinc-finger transcription factor that can directly bind to DNA. We show that the identified IKZF1 variant (p.His195Arg) alters a completely conserved histidine residue required for the folding of the third zinc-finger of IKAROS protein, leading to a loss of characteristic immunofluorescence nuclear staining pattern. In our case, genetic testing was essential for the diagnosis of IKAROS haploinsufficiency, of which known presentations include infections, aberrant hematopoiesis, leukemia, and age-related decrease in humoral immunity. Our family study underscores that, after infections, ITP is the second most common clinical manifestation of IKAROS haploinsufficiency

    Two Unique Cases of X-linked SCID: A Diagnostic Challenge in the Era of Newborn Screening

    Get PDF
    In the era of newborn screening (NBS) for severe combined immunodeficiency (SCID) and the possibility of gene therapy (GT), it is important to link SCID phenotype to the underlying genetic disease. In western countries, X-linked interleukin 2 receptor gamma chain (IL2RG) and adenosine deaminase (ADA) deficiency SCID are two of the most common types of SCID and can be treated by GT. As a challenge, both IL2RG and ADA genes are highly polymorphic and a gene–based diagnosis may be difficult if the variant is of unknown significance or if it is located in non-coding areas of the genes that are not routinely evaluated with exon-based genetic testing (e.g., introns, promoters, and the 5′and 3′ untranslated regions). Therefore, it is important to extend evaluation to non-coding areas of a SCID gene if the exon-based sequencing is inconclusive and there is strong suspicion that a variant in that gene is the cause for disease. Functional studies are often required in these cases to confirm a pathogenic variant. We present here two unique examples of X-linked SCID with variable immune phenotypes, where IL2R gamma chain expression was detected and no pathogenic variant was identified on initial genetic testing. Pathogenic IL2RG variants were subsequently confirmed by functional assay of gamma chain signaling and maternal X-inactivation studies. We propose that such tests can facilitate confirmation of suspected cases of X-linked SCID in newborns when initial genetic testing is inconclusive. Early identification of pathogenic IL2RG variants is especially important to ensure eligibility for gene therapy

    Lineage Reconstruction of In Vitro Identified Antigen-Specific Autoreactive B Cells from Adaptive Immune Receptor Repertoires

    No full text
    The emergence, survival, growth and maintenance of autoreactive (AR) B-cell clones, the hallmark of humoral autoimmunity, leave their footprints in B-cell receptor repertoires. Collecting IgH sequences related to polyreactive (PR) ones from adaptive immune receptor repertoire (AIRR) datasets make the reconstruction and analysis of PR/AR B-cell lineages possible. We developed a computational approach, named ImmChainTracer, to extract members and to visualize clonal relationships of such B-cell lineages. Our approach was successfully applied on the IgH repertoires of patients suffering from monogenic hypomorphic RAG1 and 2 deficiency (pRD) or polygenic systemic lupus erythematosus (SLE) autoimmune diseases to identify relatives of AR IgH sequences and to track their fate in AIRRs. Signs of clonal expansion, affinity maturation and class-switching events in PR/AR and non-PR/AR B-cell lineages were revealed. An extension of our method towards B-cell expansion caused by any trigger (e.g., infection, vaccination or antibody development) may provide deeper insight into antigen specific B-lymphogenesis

    Cellular Mechanisms Underlying B Cell Abnormalities in Patients With Gain-of-Function Mutations in the PIK3CD Gene

    No full text
    BackgroundActivated phosphoinositide 3 kinase (PI3K) -delta syndrome (APDS) is an inborn error of immunity with variable clinical phenotype of immunodeficiency and immune dysregulation and caused by gain-of-function mutations in PIK3CD. The hallmark of immune phenotype is increased proportions of transitional B cells and plasmablasts (PB), progressive B cell loss, and elevated levels of serum IgM.ObjectiveTo explore unique B cell subsets and the pathomechanisms driving B cell dysregulation beyond the transitional B cell stage in APDS.MethodsClinical and immunological data was collected from 24 patients with APDS. In five cases, we performed an in-depth analysis of B cell phenotypes and cultured purified naïve B cells to evaluate their survival, activation, Ig gene class switch recombination (CSR), PB differentiation and antibody secretion. We also analyzed PB differentiation capacity of sorted CD27-IgD- double-negative B (DNB) cells.ResultsThe patients had increased B cell sizes and higher proportions of IgM+ DNB cells than healthy controls (HC). Their naïve B cells exhibited increased death, impaired CSR but relatively normal PB differentiation. Upon stimulation, patient's DNB cells secreted a similar level of IgG but a higher level of IgM than DNB cells from HC. Targeted therapy of PI3K inhibition partially restored B cell phenotypes.ConclusionsThe present study suggests additional mechanistic insight into B cell pathology of APDS: (1) decreased peripheral B cell numbers may be due to the increased death of naïve B cells; (2) larger B cell sizes and expanded DNB population suggest enhanced activation and differentiation of naïve B cells into DNB cells; (3) the impaired CSR yet normal PB differentiation can predominantly generate IgM-secreting cells, resulting in elevated IgM levels

    Table_1_Case Report: Initial Treatment Adjustments and Complications in Ovarian Cancer Patient With Inborn Error of Immunity.pdf

    No full text
    BackgroundPatients with inborn errors of immunity (IEI) have increased risk of developing cancers secondary to impaired anti-tumor immunity. Treatment of patients with IEI and cancer is challenging as chemotherapy can exacerbate infectious susceptibility. However, the literature on optimal cancer treatment in the setting of IEI is sparse.ObjectivesWe present a patient with specific antibody deficiency with normal immunoglobins (SADNI), immune dysregulation (ID), and stage III ovarian carcinoma as an example of the need to modify conventional treatment in the context of malignancy, IEI, and ongoing infections.MethodsThis is a retrospective chart review of the patient’s clinical manifestations, laboratory evaluation and treatment course.ResultsOur patient is a female with SADNI and ID diagnosed with stage III ovarian carcinoma at 60 years of age. Her ID accounted for antinuclear antibody positive (ANA+) mixed connective tissue diseases, polyarthralgia, autoimmune neutropenia, asthma, autoimmune thyroiditis, and Celiac disease. Due to the lack of precedent in the literature, her treatment was modified with continuous input from infectious disease, allergy/immunology and oncology specialist using a multidisciplinary approach.The patient completed debulking surgery and 6 cycles of chemotherapy. The dosing for immunoglobulin replacement therapy was increased for prophylaxis. Chemotherapy doses were lowered for all cycles preemptively for IEI. The therapy included carboplatin, paclitaxel, bevacizumab, and pegfilgrastim. The patient completed six-months of maintenance medication involving bevacizumab.Her treatment course was complicated by Mycobacterium avium-complex (MAC) infection, elevated bilirubin and liver enzymes attributed to excessive immunoglobulin replacement therapy, and urinary tract infection (UTI) and incontinence.Cancer genetic analysis revealed no targetable markers and primary immunodeficiency gene panel of 407 genes by Invitae was unrevealing. Lab tests revealed no evidence of Epstein-Barr Virus (EBV) infection. Post-chemotherapy imaging revealed no evidence of cancer for 1 year and 4 months, but the disease relapsed subsequently. The patient’s lung scarring requires vigilance.ConclusionsOur patient with ovarian cancer and IEI required modified treatment and prevention of complications. In cases of IEI, optimal chemotherapy should be titrated to minimize immunosuppression yet treat cancer aggressively while decreasing the risk of infection with prophylactic antibiotics and prolonged post-treatment surveillance, including pulmonary evaluation.</p
    corecore