26 research outputs found

    Degradation of small simple and large complex lunar craters: Not a simple scale dependence

    Get PDF
    The crater record of a planetary surface unit is often analyzed by its cumulative size‐frequency distribution (CSFD). Measuring CSFDs involves traditional approaches, such as traditional crater counting (TCC) and buffered crater counting (BCC), as well as geometric corrections, such as nonsparseness correction (NSC) and buffered nonsparseness correction (BNSC). NSC and BNSC consider the effects of geometric crater obliteration on the CSFD. On the Moon, crater obliteration leads to two distinct states in which obtained CSFDs do not match the production CSFD—crater equilibrium and nonsparseness. Crater equilibrium occurs when each new impact erases a preexisting crater of the same size. It is clearly observed on lunar terrains dominated by small simple craters with steep‐sloped production CSFDs, such as Imbrian to Eratosthenian‐era mare units. Nonsparseness, on the other hand, is caused by the geometric overlap of preexisting craters by a new impact, which is also known as “cookie cutting.” Cookie cutting is most clearly observed on lunar terrains dominated by large craters with shallow‐sloped production CSFDs, such as the pre‐Nectarian lunar highlands. We use the Cratered Terrain Evolution Model (CTEM) to simulate the evolution of a pre‐Nectarian surface unit. The model was previously used to simulate the diffusion‐induced equilibrium for small craters of the lunar maria. We find that relative to their size, large craters contribute less to the diffusion of the surrounding landscape than small craters. Thus, a simple scale dependence cannot account for the per‐crater contribution to degradation by small simple and large complex craters

    A review of issues and challenges

    Get PDF
    Determining the ages of young planetary surfaces relies on using populations of small, often sub-km diameter impact craters due to the higher frequency at which they form. Smaller craters however can be less reliable for estimating ages as their size-frequency distribution is more susceptible to alteration with debate as to whether they should be used at all. With the current plethora of meter-scale resolution images acquired of the lunar and Martian surfaces, small craters have been widely used to derive model ages to establish the temporal relation of recent geologic events. In this review paper, we discuss the many factors that make smaller craters particularly challenging to use and should be taken into consideration when crater counts are confined to small crater diameters. Establishing confidence in a model age ultimately requires an understanding of the geologic context of the surface being dated as reliability can vary considerably and limitations of the dating technique should be considered in applying ages to any geologic interpretation

    Characterization of High-priority Landing Sites for Robotic Exploration Missions in the Apollo Basin, Moon

    Get PDF
    The South Pole–Aitken (SPA) basin is the oldest and largest visible impact structure on the Moon, making it a high priority science site for exploration missions. The 492 km diameter Apollo peak-ring basin is one of the youngest and largest basins within the SPA basin. We selected three regions of interest (ROIs) in the Apollo basin for which the landing and operational hazards are minimized and evaluated their science and in situ resource utilization (ISRU) potential. We examined topography, slope, crater density, rock abundance, geologic mapping, mineralogy, and inferred subsurface stratigraphy within each ROI. The results show that the terrain is safe for landing without precision landing (within a few hundred meters). The mare materials have high ISRU potential with relatively high FeO (∼16–20 wt%) and TiO2 (∼3–10 wt%) contents. Two robotic exploration mission architectures were examined for their scientific potential: (1) lander and rover with a dedicated payload suite and (2) the same architecture with sample return capability. In situ observations can address six of seven National Research Council concepts (1–3, 5–7) and Campaigns 1 and 5 of the European Space Agency's Strategy for Science at the Moon

    Science-rich Sites for In Situ Resource Utilization Characterization and End-to-end Demonstration Missions

    Get PDF
    Within the European Space Agency’s “Commercial In Situ Resource Utilization (ISRU) Demonstration Mission Preparation Phase,” we examined two types of lunar sites in preparation for an ISRU demonstration mission. First, we considered poorly characterized potential resource sites. For these so-called characterization sites, precursor missions would investigate the material properties and address strategic knowledge gaps for their use as ISRU feedstock. Regions of interest for characterization missions include the Aristarchus plateau, Montes Harbinger/Rimae Prinz, Sulpicius Gallus, and Rima Bode. Regional pyroclastic deposits at the Aristarchus plateau and adjacent Montes Harbinger/Rimae Prinz exhibit remotely sensed low-Ti, high-Fe2+ compositions. They differ from the high-Ti pyroclastics at Rima Bode and Sulpicius Gallus, which are similar to the pyroclastics northwest of the Taurus Littrow valley (Apollo 17 site). Thus, exploration of the Aristarchus plateau would allow investigation of previously uncharacterized materials, whereas Rima Bode or Sulpicius Gallus would allow comparison to Apollo 17 pyroclastics. Any of these sites would enable evaluation of reported H2O/OH in these deposits. Second, we examined a possible site for a direct ISRU demonstrator mission. For a stand-alone end-to-end (E2E) ISRU demonstrator, a fuller understanding of the physical and compositional characteristics of potential feedstock is required for mission risk reduction. In this case, locations near preexisting sites would allow extrapolation of ground truth to nearby deposits. Because a Ti-rich pyroclastic deposit appears advantageous from beneficiation and compositional perspectives, we examine an example E2E demo site northwest of the Taurus Littrow valley. Hydrogen and methane reduction, as well as the Fray–Farthing–Chen Cambridge process, could be tested there.BMWi, 50OW1504, Missionsunterstützende Arbeiten und geologische Untersuchungen der lunaren Oberfläche mit Daten der Lunar Reconnaissance Orbiter Camera (LROC)BMWi, 50OW2001, Missionsunterstützende und wissenschaftliche Arbeiten mit Daten der Lunar Reconnaissance Orbiter Camera (LROC) und Vorbereitung zukünftiger Mondmissione

    Lunar Mare Basaltic Volcanism : Volcanic Features and Emplacement Processes

    Get PDF
    Volcanism is a fundamental process in the geological evolution of the Moon, providing clues to the composition and structure of the mantle, the location and duration of interior melting, the nature of convection and lunar thermal evolution. Progress in understanding volcanism has been remarkable in the short 60-year span of the Space Age. Before Sputnik 1 in 1957, the lunar farside was unknown, the origin of the dark lunar maria was debated (sedimentary or volcanic), and significant controversy surrounded the question of how the multitude of craters on the surface formed

    Replication Data for: Slopes of Lunar Crater Size-Frequency Distributions at Copernican-Aged Craters

    No full text
    Abstract Craters on the lunar surface can provide valuable information about the timing and sequence of surface-forming processes on the Moon. A commonly used method for age determination is the analysis of the crater size-frequency distribution (CSFD) to which a production function (PF) is fitted that represents the size-frequency distribution of the impactors. However, the commonly used PF of Neukum (1983) is valid for crater diameters between 10 m and 300 km. Neukum et al. (2001, https://doi.org/10.1007/978-94-017-1035-0_3) revised the PF for crater diameters of 100 m–200 km. However, it is suggested to also be valid for the diameter range of 10 m–300 km as well. To assess whether we can extend a PF to craters ≤10 m in diameter, we investigated the slopes of the CSFDs of small craters formed on ejecta of young Copernican-aged craters Giordano Bruno, Moore F, North Ray, and South Ray. A PF for smaller diameters would allow dating of young geological units, which are typically small, and would reduce the statistical error in age determinations, since smaller craters are more abundant. However, small craters are strongly influenced by geological factors, such as target properties, crater degradation, and secondary craters. For craters between 10 and 20 m we obtain a steeper CSFD slope than Neukum's proposed −3 slope (cumulative), whereas for craters ≤10 m the slope is about −3. We conclude that the PF of Neukum (1983) provides a reasonable CSFD slope for smaller craters, although it was not developed for this crater diameter range. Key Points * We studied small craters on young ejecta blankets to evaluate if the lunar production function (PF) is viable for craters ≤10 m * The crater size-frequency distributions (CSFDs) indicate that the PF can indeed be extended to crater diameters ≤10 m * Our observed slopes of CSFDs at the studied Copernican-aged craters are consistent with previous finding

    Scientific perspectives on lunar exploration in Europe

    Get PDF
    Abstract The Moon is a geological history book, preserving information about the history of the Solar System, including the formation and early evolution of the terrestrial planets and their bombardment histories, as well as providing insight into other fundamental Solar System processes. These topics form the basis for science “of the Moon”, but the lunar surface is also a platform for science “on the Moon” and “from the Moon”—including astronomical observations, fundamental physics, and life science investigations. Recently, the Moon has become a destination for technology research and development—in particular for developing in situ resources, human exploration, and habitation, and for its potential use as a waypoint for the human exploration of Mars. This paper, based on recommendations originally proposed in a White Paper for ESA’s SciSpacE strategy, outlines key lunar science questions that may be addressed by future space exploration missions and makes recommendations for the next decades

    Geologic History of the Amundsen Crater Region Near the Lunar South Pole: Basis for Future Exploration

    No full text
    We provide the first detailed 1:100,000 scale geomorphologic map of the ∼100 km Amundsen crater region, which is of high scientific relevance for future exploration, e.g., NASA’s VIPER mission, the Artemis program, and the Chinese International Lunar Research Station. We investigated the complex geological history of the region before and after the formation of Amundsen crater on the rims of the South Pole–Aitken (SPA) and Amundsen–Ganswindt basins. We present a new Amundsen crater formation age of ∼4.04 Ga, which, in contrast to previously derived ages, is based on non-light-plains terrain. The estimated maximum excavation depth for Amundsen crater is ∼8 km, and elevated concentrations of FeO near the crater suggest that Amundsen may have redistributed SPA-derived materials. Plains materials of various kinds were observed both inside and outside Amundsen crater and are estimated to be up to 350 m thick and ∼3.8 Ga old. A less cratered, tens of meters thick mantling unit indicates a resurfacing event ∼3.7 Ga ago. We highlight five potential exploration sites that satisfy technical constraints (such as shallow slopes, solar illumination, and Earth visibility), provide materials that can be sampled, and are capable of addressing multiple science objectives. Due to its accessibility and traversability, combined with its geologic diversity, proximity of permanently shadowed regions for studying volatile processes, and ability to address multiple science objectives, we confirm and reinforce the Amundsen crater region as a high-priority landing and exploration site
    corecore