151 research outputs found

    RNA-Dependent Oligomerization of APOBEC3G Is Required for Restriction of HIV-1

    Get PDF
    The human cytidine deaminase APOBEC3G (A3G) is a potent inhibitor of retroviruses and transposable elements and is able to deaminate cytidines to uridines in single-stranded DNA replication intermediates. A3G contains two canonical cytidine deaminase domains (CDAs), of which only the C-terminal one is known to mediate cytidine deamination. By exploiting the crystal structure of the related tetrameric APOBEC2 (A2) protein, we identified residues within A3G that have the potential to mediate oligomerization of the protein. Using yeast two-hybrid assays, co-immunoprecipitation, and chemical crosslinking, we show that tyrosine-124 and tryptophan-127 within the enzymatically inactive N-terminal CDA domain mediate A3G oligomerization, and this coincides with packaging into HIV-1 virions. In addition to the importance of specific residues in A3G, oligomerization is also shown to be RNA-dependent. Homology modelling of A3G onto the A2 template structure indicates an accumulation of positive charge in a pocket formed by a putative dimer interface. Substitution of arginine residues at positions 24, 30, and 136 within this pocket resulted in reduced virus inhibition, virion packaging, and oligomerization. Consistent with RNA serving a central role in all these activities, the oligomerization-deficient A3G proteins associated less efficiently with several cellular RNA molecules. Accordingly, we propose that occupation of the positively charged pocket by RNA promotes A3G oligomerization, packaging into virions and antiviral function

    Mouse Apolipoprotein B Editing Complex 3 (APOBEC3) Is Expressed in Germ Cells and Interacts with Dead-End (DND1)

    Get PDF
    encoded protein, DND1, is able to bind to the 3β€²-untranslated region (UTR) of messenger RNAs (mRNAs) to displace micro-RNA (miRNA) interaction with mRNA. Thus, one function of DND1 is to prevent miRNA mediated repression of mRNA. We report that DND1 interacts specifically with APOBEC3. APOBEC3 is a multi-functional protein. It inhibits retroviral replication. In addition, recent studies show that APOBEC3 interacts with cellular RNA-binding proteins and to mRNA to inhibit miRNA-mediated repression of mRNA.Here we show that DND1 specifically interacts with another cellular protein, APOBEC3. We present our data which shows that DND1 co-immunoprecipitates APOBEC3 from mammalian cells and also endogenous APOBEC3 from mouse gonads. Whether the two proteins interact directly remains to be elucidated. We show that both DND1 and APOBEC3 are expressed in germ cells and in the early gonads of mouse embryo. Expression of fluorescently-tagged DND1 and APOBEC3 indicate they localize to the cytoplasm and when DND1 and APOBEC3 are expressed together in cells, they sequester near peri-nuclear sites.The 3β€²-UTR of mRNAs generally encode multiple miRNA binding sites as well as binding sites for a variety of RNA binding proteins. In light of our findings of DND1-APOBEC3 interaction and taking into consideration reports that DND1 and APOBEC3 bind to mRNA to inhibit miRNA mediated repression, our studies implicate a possible role of DND1-APOBEC3 interaction in modulating miRNA-mediated mRNA repression. The interaction of DND1 and APOBEC3 could be one mechanism for maintaining viability of germ cells and for preventing germ cell tumor development

    Encapsidation of APOBEC3G into HIV-1 virions involves lipid raft association and does not correlate with APOBEC3G oligomerization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cellular cytidine deaminase APOBEC3G (A3G), when incorporated into the human immunodeficiency virus type 1 (HIV-1), renders viral particles non-infectious. We previously observed that mutation of a single cysteine residue of A3G (C100S) inhibited A3G packaging. In addition, several recent studies showed that mutation of tryptophan 127 (W127) and tyrosine 124 (Y124) inhibited A3G encapsidation suggesting that the N-terminal CDA constitutes a viral packaging signal in A3G. It was also reported that W127 and Y124 affect A3G oligomerization.</p> <p>Results</p> <p>Here we studied the mechanistic basis of the packaging defect of A3G W127A and Y124A mutants. Interestingly, cell fractionation studies revealed a strong correlation between encapsidation, lipid raft association, and genomic RNA binding of A3G. Surprisingly, the presence of a C-terminal epitope tag affected lipid raft association and encapsidation of the A3G W127A mutant but had no effect on wt A3G encapsidation, lipid raft association, and interaction with viral genomic RNA. Mutation of Y124 abolished A3G encapsidation irrespective of the presence or absence of an epitope tag. Contrasting a recent report, our co-immunoprecipitation studies failed to reveal a correlation between A3G oligomerization and A3G encapsidation. In fact, our W127A and Y124A mutants both retained the ability to oligomerize.</p> <p>Conclusion</p> <p>Our results confirm that W127 and Y124 residues in A3G are important for encapsidation into HIV-1 virions and our data establish a novel correlation between genomic RNA binding, lipid raft association, and viral packaging of A3G. In contrast, we were unable to confirm a role of W127 and Y124 in A3G oligomerization and we thus failed to confirm a correlation between A3G oligomerization and virus encapsidation.</p

    APOBEC3G and APOBEC3F Require an Endogenous Cofactor to Block HIV-1 Replication

    Get PDF
    APOBEC3G (A3G)/APOBEC3F (A3F) are two members of APOBEC3 cytidine deaminase subfamily. Although they potently inhibit the replication of vif-deficient HIV-1, this mechanism is still poorly understood. Initially, A3G/A3F were thought to catalyze C-to-U transitions on the minus-strand viral cDNAs during reverse transcription to disrupt the viral life cycle. Recently, it was found more likely that A3G/A3F directly interrupts viral reverse transcription or integration. In addition, A3G/A3F are both found in the high-molecular-mass complex in immortalized cell lines, where they interact with a number of different cellular proteins. However, there has been no evidence to prove that these interactions are required for A3G/A3F function. Here, we studied A3G/A3F-restricted HIV-1 replication in six different human T cell lines by infecting them with wild-type or vif-deficient HIV-1. Interestingly, in a CEM-derived cell line CEM-T4, which expresses high levels of A3G/A3F proteins, the vif-deficient virus replicated as equally well as the wild-type virus, suggesting that these endogenous antiretroviral genes lost anti-HIV activities. It was confirmed that these A3G/A3F genes do not contain any mutation and are functionally normal. Consistently, overexpression of exogenous A3G/A3F in CEM-T4 cells still failed to restore their anti-HIV activities. However, this activity could be restored if CEM-T4 cells were fused to 293T cells to form heterokaryons. These results demonstrate that CEM-T4 cells lack a cellular cofactor, which is critical for A3G/A3F anti-HIV activity. We propose that a further study of this novel factor will provide another strategy for a complete understanding of the A3G/A3F antiretroviral mechanism

    Apobec 3G Efficiently Reduces Infectivity of the Human Exogenous Gammaretrovirus XMRV

    Get PDF
    The human exogenous gammaretrovirus XMRV is thought to be implicated in prostate cancer and chronic fatigue syndrome. Besides pressing epidemiologic questions, the elucidation of the tissue and cell tropism of the virus, as well as its sensitivity to retroviral restriction factors is of fundamental importance. The Apobec3 (A3) proteins, a family of cytidine deaminases, are one important group of host proteins that control primary infection and efficient viral spread.Here we demonstrate that XMRV is resistant to human Apobec 3B, 3C and 3F, while being highly susceptible to the human A3G protein, a factor which is known to confer antiviral activity against most retroviruses. We show that XMRV as well as MoMLV virions package Apobec proteins independent of their specific restriction activity. hA3G was found to be a potent inhibitor of XMRV as well as of MoMLV infectivity. In contrast to MoMLV, XMRV infection can also be partially reduced by low concentrations of mA3. Interestingly, established prostate cancer cell lines, which are highly susceptible to XMRV infection, do not or only weakly express hA3G.Our findings confirm and extend recently published data that show restriction of XMRV infection by hA3G. The results will be of value to explore which cells are infected with XMRV and efficiently support viral spread in vivo. Furthermore, the observation that XMRV infection can be reduced by mA3 is of interest with regard to the current natural reservoir of XMRV infection

    APOBEC3A Is a Specific Inhibitor of the Early Phases of HIV-1 Infection in Myeloid Cells

    Get PDF
    Myeloid cells play numerous roles in HIV-1 pathogenesis serving as a vehicle for viral spread and as a viral reservoir. Yet, cells of this lineage generally resist HIV-1 infection when compared to cells of other lineages, a phenomenon particularly acute during the early phases of infection. Here, we explore the role of APOBEC3A on these steps. APOBEC3A is a member of the APOBEC3 family that is highly expressed in myeloid cells, but so far lacks a known antiviral effect against retroviruses. Using ectopic expression of APOBEC3A in established cell lines and specific silencing in primary macrophages and dendritic cells, we demonstrate that the pool of APOBEC3A in target cells inhibits the early phases of HIV-1 infection and the spread of replication-competent R5-tropic HIV-1, specifically in cells of myeloid origins. In these cells, APOBEC3A affects the amount of vDNA synthesized over the course of infection. The susceptibility to the antiviral effect of APOBEC3A is conserved among primate lentiviruses, although the viral protein Vpx coded by members of the SIVSM/HIV-2 lineage provides partial protection from APOBEC3A during infection. Our results indicate that APOBEC3A is a previously unrecognized antiviral factor that targets primate lentiviruses specifically in myeloid cells and that acts during the early phases of infection directly in target cells. The findings presented here open up new venues on the role of APOBEC3A during HIV infection and pathogenesis, on the role of the cellular context in the regulation of the antiviral activities of members of the APOBEC3 family and more generally on the natural functions of APOBEC3A

    Evolution of the Primate APOBEC3A Cytidine Deaminase Gene and Identification of Related Coding Regions

    Get PDF
    The APOBEC3 gene cluster encodes six cytidine deaminases (A3A-C, A3DE, A3F-H) with single stranded DNA (ssDNA) substrate specificity. For the moment A3A is the only enzyme that can initiate catabolism of both mitochondrial and nuclear DNA. Human A3A expression is initiated from two different methionine codons M1 or M13, both of which are in adequate but sub-optimal Kozak environments. In the present study, we have analyzed the genetic diversity among A3A genes across a wide range of 12 primates including New World monkeys, Old World monkeys and Hominids. Sequence variation was observed in exons 1–4 in all primates with up to 31% overall amino acid variation. Importantly for 3 hominids codon M1 was mutated to a threonine codon or valine codon, while for 5/12 primates strong Kozak M1 or M13 codons were found. Positive selection was apparent along a few branches which differed compared to positive selection in the carboxy-terminal of A3G that clusters with A3A among human cytidine deaminases. In the course of analyses, two novel non-functional A3A-related fragments were identified on chromosome 4 and 8 kb upstream of the A3 locus. This qualitative and quantitative variation among primate A3A genes suggest that subtle differences in function might ensue as more light is shed on this increasingly important enzyme

    Two Genetic Determinants Acquired Late in Mus Evolution Regulate the Inclusion of Exon 5, which Alters Mouse APOBEC3 Translation Efficiency

    Get PDF
    Mouse apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like editing complex 3 (mA3), an intracellular antiviral factor, has 2 allelic variations that are linked with different susceptibilities to beta- and gammaretrovirus infections among various mouse strains. In virus-resistant C57BL/6 (B6) mice, mA3 transcripts are more abundant than those in susceptible BALB/c mice both in the spleen and bone marrow. These strains of mice also express mA3 transcripts with different splicing patterns: B6 mice preferentially express exon 5-deficient (Ξ”5) mA3 mRNA, while BALB/c mice produce exon 5-containing full-length mA3 mRNA as the major transcript. Although the protein product of the Ξ”5 mRNA exerts stronger antiretroviral activities than the full-length protein, how exon 5 affects mA3 antiviral activity, as well as the genetic mechanisms regulating exon 5 inclusion into the mA3 transcripts, remains largely uncharacterized. Here we show that mA3 exon 5 is indeed a functional element that influences protein synthesis at a post-transcriptional level. We further employed in vitro splicing assays using genomic DNA clones to identify two critical polymorphisms affecting the inclusion of exon 5 into mA3 transcripts: the number of TCCT repeats upstream of exon 5 and the single nucleotide polymorphism within exon 5 located 12 bases upstream of the exon 5/intron 5 boundary. Distribution of the above polymorphisms among different Mus species indicates that the inclusion of exon 5 into mA3 mRNA is a relatively recent event in the evolution of mice. The widespread geographic distribution of this exon 5-including genetic variant suggests that in some Mus populations the cost of maintaining an effective but mutagenic enzyme may outweigh its antiviral function

    Deaminase-Independent Inhibition of Parvoviruses by the APOBEC3A Cytidine Deaminase

    Get PDF
    The APOBEC3 proteins form a multigene family of cytidine deaminases with inhibitory activity against viruses and retrotransposons. In contrast to APOBEC3G (A3G), APOBEC3A (A3A) has no effect on lentiviruses but dramatically inhibits replication of the parvovirus adeno-associated virus (AAV). To study the contribution of deaminase activity to the antiviral activity of A3A, we performed a comprehensive mutational analysis of A3A. By mutation of non-conserved residues, we found that regions outside of the catalytic active site contribute to both deaminase and antiviral activities. Using A3A point mutants and A3A/A3G chimeras, we show that deaminase activity is not required for inhibition of recombinant AAV production. We also found that deaminase-deficient A3A mutants block replication of both wild-type AAV and the autonomous parvovirus minute virus of mice (MVM). In addition, we identify specific residues of A3A that confer activity against AAV when substituted into A3G. In summary, our results demonstrate that deaminase activity is not necessary for the antiviral activity of A3A against parvoviruses
    • …
    corecore