88 research outputs found

    Transcript Profiling in Host–Pathogen Interactions

    Get PDF
    Using genomic technologies, it is now possible to address research hypotheses in the context of entire developmental or biochemical pathways, gene networks, and chromosomal location of relevant genes and their inferred evolutionary history. Through a range of platforms, researchers can survey an entire transcriptome under a variety of experimental and field conditions. Interpretation of such data has led to new insights and revealed previously undescribed phenomena. In the area of plant-pathogen interactions, transcript profiling has provided unparalleled perception into the mechanisms underlying gene-for-gene resistance and basal defense, host vs nonhost resistance, biotrophy vs necrotrophy, and pathogenicity of vascular vs nonvascular pathogens, among many others. In this way, genomic technologies have facilitated a system-wide approach to unifying themes and unique features in the interactions of hosts and pathogens

    Cloning of the rice Xo1 resistance gene and interaction of the Xo1 protein with the defense-suppressing Xanthomonas effector Tal2h

    Get PDF
    The Xo1 locus in the heirloom rice variety Carolina Gold Select confers resistance to bacterial leaf streak and bacterial blight, caused by Xanthomonas oryzae pv. oryzicola and X. oryzae pv. oryzae, respectively. Resistance is triggered by pathogen-delivered transcription activator-like effectors (TALEs) independent of their ability to activate transcription and is suppressed by truncated variants called truncTALEs, common among Asian strains. By transformation of the susceptible variety Nipponbare, we show that one of 14 nucleotide-binding, leucine-rich repeat (NLR) protein genes at the locus, with a zinc finger BED domain, is the Xo1 gene. Analyses of published transcriptomes revealed that the Xo1-mediated response is more similar to those mediated by two other NLR resistance genes than it is to the response associated with TALE-specific transcriptional activation of the executor resistance gene Xa23 and that a truncTALE dampens or abolishes activation of defense-associated genes by Xo1. In Nicotiana benthamiana leaves, fluorescently tagged Xo1 protein, like TALEs and truncTALEs, localized to the nucleus. And endogenous Xo1 specifically coimmunoprecipitated from rice leaves with a pathogen-delivered, epitope-tagged truncTALE. These observations suggest that suppression of Xo1-function by truncTALEs occurs through direct or indirect physical interaction. They further suggest that effector coimmunoprecipitation may be effective for identifying or characterizing other resistance genes

    TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction

    Get PDF
    Transcription activator-like (TAL) effectors are repeat-containing proteins used by plant pathogenic bacteria to manipulate host gene expression. Repeats are polymorphic and individually specify single nucleotides in the DNA target, with some degeneracy. A TAL effector-nucleotide binding code that links repeat type to specified nucleotide enables prediction of genomic binding sites for TAL effectors and customization of TAL effectors for use in DNA targeting, in particular as custom transcription factors for engineered gene regulation and as site-specific nucleases for genome editing. We have developed a suite of web-based tools called TAL Effector-Nucleotide Targeter 2.0 (TALE-NT 2.0; https://boglab.plp.iastate.edu/) that enables design of custom TAL effector repeat arrays for desired targets and prediction of TAL effector binding sites, ranked by likelihood, in a genome, promoterome or other sequence of interest. Search parameters can be set by the user to work with any TAL effector or TAL effector nuclease architecture. Applications range from designing highly specific DNA targeting tools and identifying potential off-target sites to predicting effector targets important in plant disease

    A two-genome microarray for the rice pathogens Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola and its use in the discovery of a difference in their regulation of hrp genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Xanthomonas oryzae </it>pv. <it>oryzae </it>(<it>Xoo</it>) and <it>X. oryzae </it>pv. <it>oryzicola </it>(<it>Xoc</it>) are bacterial pathogens of the worldwide staple and grass model, rice. <it>Xoo </it>and <it>Xoc </it>are closely related but <it>Xoo </it>invades rice vascular tissue to cause bacterial leaf blight, a serious disease of rice in many parts of the world, and <it>Xoc </it>colonizes the mesophyll parenchyma to cause bacterial leaf streak, a disease of emerging importance. Both pathogens depend on <it>hrp </it>genes for type III secretion to infect their host. We constructed a 50–70 mer oligonucleotide microarray based on available genome data for <it>Xoo </it>and <it>Xoc </it>and compared gene expression in <it>Xoo </it>strains PXO99<sup>A </sup>and <it>Xoc </it>strain BLS256 grown in the rich medium PSB vs. XOM2, a minimal medium previously reported to induce <it>hrp </it>genes in <it>Xoo </it>strain T7174.</p> <p>Results</p> <p>Three biological replicates of the microarray experiment to compare global gene expression in representative strains of <it>Xoo </it>and <it>Xoc </it>grown in PSB vs. XOM2 were carried out. The non-specific error rate and the correlation coefficients across biological replicates and among duplicate spots revealed that the microarray data were robust. 247 genes of <it>Xoo </it>and 39 genes of <it>Xoc </it>were differentially expressed in the two media with a false discovery rate of 5% and with a minimum fold-change of 1.75. Semi-quantitative-RT-PCR assays confirmed differential expression of each of 16 genes each for <it>Xoo </it>and <it>Xoc </it>selected for validation. The differentially expressed genes represent 17 functional categories.</p> <p>Conclusion</p> <p>We describe here the construction and validation of a two-genome microarray for the two pathovars of <it>X. oryzae</it>. Microarray analysis revealed that using representative strains, a greater number of <it>Xoo </it>genes than <it>Xoc </it>genes are differentially expressed in XOM2 relative to PSB, and that these include <it>hrp </it>genes and other genes important in interactions with rice. An exception was the <it>rax </it>genes, which are required for production of the host resistance elicitor AvrXa21, and which were expressed constitutively in both pathovars.</p

    Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene

    Get PDF
    Citation: Cernadas RA, Doyle EL, Nin˜o-Liu DO, Wilkins KE, Bancroft T, et al. (2014) Code-Assisted Discovery of TAL Effector Targets in Bacterial Leaf Streak of Rice Reveals Contrast with Bacterial Blight and a Novel Susceptibility Gene. PLoS Pathog 10(2): e1003972. https://doi.org/10.1371/journal.ppat.1003972Bacterial leaf streak of rice, caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an increasingly important yield constraint in this staple crop. A mesophyll colonizer, Xoc differs from X. oryzae pv. oryzae (Xoo), which invades xylem to cause bacterial blight of rice. Both produce multiple distinct TAL effectors, type III-delivered proteins that transactivate effector-specific host genes. A TAL effector finds its target(s) via a partially degenerate code whereby the modular effector amino acid sequence identifies nucleotide sequences to which the protein binds. Virulence contributions of some Xoo TAL effectors have been shown, and their relevant targets, susceptibility (S) genes, identified, but the role of TAL effectors in leaf streak is uncharacterized. We used host transcript profiling to compare leaf streak to blight and to probe functions of Xoc TAL effectors. We found that Xoc and Xoo induce almost completely different host transcriptional changes. Roughly one in three genes upregulated by the pathogens is preceded by a candidate TAL effector binding element. Experimental analysis of the 44 such genes predicted to be Xoc TAL effector targets verified nearly half, and identified most others as false predictions. None of the Xoc targets is a known bacterial blight S gene. Mutational analysis revealed that Tal2g, which activates two genes, contributes to lesion expansion and bacterial exudation. Use of designer TAL effectors discriminated a sulfate transporter gene as the S gene. Across all targets, basal expression tended to be higher than genome-average, and induction moderate. Finally, machine learning applied to real vs. falsely predicted targets yielded a classifier that recalled 92% of the real targets with 88% precision, providing a tool for better target prediction in the future. Our study expands the number of known TAL effector targets, identifies a new class of S gene, and improves our ability to predict functional targeting

    Host-Induced Gene Silencing in Barley Powdery Mildew Reveals a Class of Ribonuclease-Like Effectors

    Get PDF
    Obligate biotrophic pathogens of plants must circumvent or counteract defenses to guarantee accommodation inside the host. To do so, they secrete a variety of effectors that regulate host immunity and facilitate the establishment of pathogen feeding structures called haustoria. The barley powdery mildew fungus Blumeria graminis f. sp. hordeiproduces a large number of proteins predicted to be secreted from haustoria. Fifty of these Blumeria effector candidates (BEC) were screened by host-induced gene silencing (HIGS), and eight were identified that contribute to infection. One shows similarity to β-1,3 glucosyltransferases, one to metallo-proteases, and two to microbial secreted ribonucleases; the remainder have no similarity to proteins of known function. Transcript abundance of all eight BEC increases dramatically in the early stages of infection and establishment of haustoria, consistent with a role in that process. Complementation analysis using silencing-insensitive synthetic cDNAs demonstrated that the ribonuclease-like BEC 1011 and 1054 are bona fide effectors that function within the plant cell. BEC1011 specifically interferes with pathogen-induced host cell death. Both are part of a gene superfamily unique to the powdery mildew fungi. Structural modeling was consistent, with BEC1054 adopting a ribonuclease-like fold, a scaffold not previously associated with effector function

    Acquisition and Evolution of Plant Pathogenesis–Associated Gene Clusters and Candidate Determinants of Tissue-Specificity in Xanthomonas

    Get PDF
    Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown.To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors) cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage.Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small number of genes or in non-coding sequences, and/or differences outside the clusters, potentially among regulatory targets or secretory substrates

    Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting

    Get PDF
    TALENs are important new tools for genome engineering. Fusions of transcription activator-like (TAL) effectors of plant pathogenic Xanthomonas spp. to the FokI nuclease, TALENs bind and cleave DNA in pairs. Binding specificity is determined by customizable arrays of polymorphic amino acid repeats in the TAL effectors. We present a method and reagents for efficiently assembling TALEN constructs with custom repeat arrays. We also describe design guidelines based on naturally occurring TAL effectors and their binding sites. Using software that applies these guidelines, in nine genes from plants, animals and protists, we found candidate cleavage sites on average every 35 bp. Each of 15 sites selected from this set was cleaved in a yeast-based assay with TALEN pairs constructed with our reagents. We used two of the TALEN pairs to mutate HPRT1 in human cells and ADH1 in Arabidopsis thaliana protoplasts. Our reagents include a plasmid construct for making custom TAL effectors and one for TAL effector fusions to additional proteins of interest. Using the former, we constructed de novo a functional analog of AvrHah1 of Xanthomonas gardneri. The complete plasmid set is available through the non-profit repository AddGene and a web-based version of our software is freely accessible online

    TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton

    Get PDF
    AbstractTranscription activator-like (TAL) effectors from Xanthomonas citri subsp. malvacearum (Xcm) are essential for bacterial blight of cotton (BBC). Here, by combining transcriptome profiling with TAL effector-binding element (EBE) prediction, we show that GhSWEET10, encoding a functional sucrose transporter, is induced by Avrb6, a TAL effector determining Xcm pathogenicity. Activation of GhSWEET10 by designer TAL effectors (dTALEs) restores virulence of Xcm avrb6 deletion strains, whereas silencing of GhSWEET10 compromises cotton susceptibility to infections. A BBC-resistant line carrying an unknown recessive b6 gene bears the same EBE as the susceptible line, but Avrb6-mediated induction of GhSWEET10 is reduced, suggesting a unique mechanism underlying b6-mediated resistance. We show via an extensive survey of GhSWEET transcriptional responsiveness to different Xcm field isolates that additional GhSWEETs may also be involved in BBC. These findings advance our understanding of the disease and resistance in cotton and may facilitate the development cotton with improved resistance to BBC.</jats:p
    corecore