676 research outputs found

    High-pressure Debye-Waller and Grueneisen parameters of Au and Cu

    Full text link
    The lattice vibrations are determined in the quasi-harmonic approximation for elemental Au and Cu to twice their normal density by first-principles electronic band-structure calculations. It is found for these materials that the important moments of the phonon density of states can be obtained to high accuracy from short-ranged force constant models. We discuss the implications for the Grueneisen parameters on the basis of calculated phonon moments and their approximations by using bulk moduli and Debye-Waller factors.Comment: 4 pages, 2 figures to appear in the proceedings of the 13th APS Topical Conference on Shock Compression of Condensed Matter (scheduled for April 2004

    Automated mass spectrometer/analysis system: A concept

    Get PDF
    System performs rapid multiple analyses of entire compound classes or individual compounds on small amounts of sample and reagent. Method will allow screening of large populations for metabolic disorders and establishment of effective-but-safe levels of therapeutic drugs in body fluids and tissues

    Slabs of stabilized jellium: Quantum-size and self-compression effects

    Get PDF
    We examine thin films of two simple metals (aluminum and lithium) in the stabilized jellium model, a modification of the regular jellium model in which a constant potential is added inside the metal to stabilize the system for a given background density. We investigate quantum-size effects on the surface energy and the work function. For a given film thickness we also evaluate the density yielding energy stability, which is found to be slightly higher than the equilibrium density of the bulk system and to approach this value in the limit of thick slabs. A comparison of our self-consistent calculations with the predictions of the liquid-drop model shows the validity of this model.Comment: 7 pages, 6 figures, to appear in Phys. Rev.

    Block-Diagonalization and f-electron Effects in Tight-Binding Theory

    Full text link
    We extend a tight-binding total energy method to include f-electrons, and apply it to the study of the structural and elastic properties of a range of elements from Be to U. We find that the tight-binding parameters are as accurate and transferable for f-electron systems as they are for d-electron systems. In both cases we have found it essential to take great care in constraining the fitting procedure by using a block-diagonalization procedure, which we describe in detail.Comment: 9 pages, 6 figure

    Evolving properties of two dimensional materials, from graphene to graphite

    Full text link
    We have studied theoretically, using density functional theory, several materials properties when going from one C layer in graphene to two and three g raphene layers and on to graphite. The properties we have focused on are the elastic constants, electronic structure (energy bands and density of state s), and the dielectric properties. For any of the properties we have investigated the modification due to an increase in the number of graphene layers is within a few percent. Our results are in agreement with the analysis presented recently by Kopelevich and Esquinazi (unpublished)
    • …
    corecore