1,274 research outputs found

    Development of Novel Density Functionals for Thermochemical Kinetics

    Full text link
    A new density functional theory (DFT) exchange-correlation functional for the exploration of reaction mechanisms is proposed. This new functional, denoted BMK (Boese-Martin for Kinetics), has an accuracy in the 2 kcal/mol range for transition state barriers but, unlike previous attempts at such a functional, this improved accuracy does not come at the expense of equilibrium properties. This makes it a general-purpose functional whose domain of applicability has been extended to transition states, rather than a specialized functional for kinetics. The improvement in BMK rests on the inclusion of the kinetic energy density together with a large value of the exact exchange mixing coefficient. For this functional, the kinetic energy density appears to correct `back' the excess exact exchange mixing for ground-state properties, possibly simulating variable exchange.Comment: J. Chem. Phys., in press (303431JCP, scheduled for August 15, 2004 issue); supplementary data available at http://theochem.weizmann.ac.il/web/papers/BMK.htm

    From ab initio quantum chemistry to molecular dynamics: The delicate case of hydrogen bonding in ammonia

    Get PDF
    The ammonia dimer (NH3)2 has been investigated using high--level ab initio quantum chemistry methods and density functional theory (DFT). The structure and energetics of important isomers is obtained to unprecedented accuracy without resorting to experiment. The global minimum of eclipsed C_s symmetry is characterized by a significantly bent hydrogen bond which deviates from linearity by about 20 degrees. In addition, the so-called cyclic C_{2h} structure is extremely close in energy on an overall flat potential energy surface. It is demonstrated that none of the currently available (GGA, meta--GGA, and hybrid) density functionals satisfactorily describe the structure and relative energies of this nonlinear hydrogen bond. We present a novel density functional, HCTH/407+, designed to describe this sort of hydrogen bond quantitatively on the level of the dimer, contrary to e.g. the widely used BLYP functional. This improved functional is employed in Car-Parrinello ab initio molecular dynamics simulations of liquid ammonia to judge its performance in describing the associated liquid. Both the HCTH/407+ and BLYP functionals describe the properties of the liquid well as judged by analysis of radial distribution functions, hydrogen bonding structure and dynamics, translational diffusion, and orientational relaxation processes. It is demonstrated that the solvation shell of the ammonia molecule in the liquid phase is dominated by steric packing effects and not so much by directional hydrogen bonding interactions. In addition, the propensity of ammonia molecules to form bifurcated and multifurcated hydrogen bonds in the liquid phase is found to be negligibly small.Comment: Journal of Chemical Physics, in press (305335JCP

    Anharmonic force fields of perchloric acid, HClO4_4, and perchloric anhydride, Cl2_2O7_7. An extreme case of inner polarization

    Full text link
    DFT (density functional theory) anharmonic force fields with basis sets near the Kohn-Sham limit have been obtained for perchloric acid, HClO4_4, and perchloric anhydride, Cl2_2O7_7. Calculated fundamental frequencies are in very good agreement with available experimental data. Some reassignments in the vibrational spectra of Cl2_2O7_7 are proposed based on our calculations. HClO4_4 and Cl2_2O7_7 are particularly severe examples of the `inner polarization' phenomenon. The polarization consistent basis sets pc-1 and pc-2 (as well as their augmented counterparts) should be supplemented with two (preferably three) and one (preferably two) high-exponent dd functions, respectively, on second-row atoms. Complete anharmonic force fields are available as electronic supporting information.Comment: J. Mol. Struct., in press (special issue); Electronic Supporting Information at http://theochem.weizmann.ac.il/web/papers/Cl2O7.htm

    Thermoelectric effects in Kondo correlated quantum dots

    Full text link
    In this Letter we study thermoelectric effects in ultra small quantum dots. We study the behaviour of the thermopower, Peltier coefficient and thermal conductance both in the sequencial tunneling regime and in the regime where Kondo correlations develope. Both cases of linear response and non-equilibrium induced by strong temperature gradients are considered. The thermopower is a very sensitive tool to detect Kondo correlations. It changes sign both as a function of temperature and temperature gradient. We also discuss violations of the Wiedemann-Franz law.Comment: 7 pages; 5 figure

    How Does Democracy Cause Growth?

    Full text link
    Recent empirical work has established that 'democracy causes growth'. In this paper, we determine the underlying institutions which drive this relationship using data from the Varieties of Democracy project. We sketch how incentives and opportunities as well as the distribution of political power shaped by underlying institutions, in combination with the extent of the market, endogenously form an 'economic blueprint for growth', which likely differs across countries. We take our model to the data by adopting novel heterogeneous treatment effects estimators, which allow for non-parallel trends and selection into institutional change, and run horse races between underlying institutions. We find that freedom of expression, clean elections, and legislative executive constraints are the foremost drivers of long-run development. Erosion of these institutions, as witnessed recently in many countries, may jeopardise the perpetual growth effect of becoming a liberal democracy we establish for the post-WWII period

    Mechanical Cooper pair transportation as a source of long distance superconducting phase coherence

    Full text link
    Transportation of Cooper-pairs by a movable single Cooper-pair-box placed between two remote superconductors is shown to establish coherent coupling between them. This coupling is due to entanglement of the movable box with the leads and is manifested in the supression of quantum fluctuations of the relative phase of the order parameters of the leads. It can be probed by attaching a high resistance Josephson junction between the leads and measuring the current through this junction. The current is suppressed with increasing temperature.Comment: 4 pages, 4 figures, RevTeX; Updated version, typos correcte

    A Multimer Embedding Approach for Molecular Crystals up to Harmonic Vibrational Properties

    Full text link
    Accurate calculations of molecular crystals are crucial for drug design and crystal engineering. However, periodic high-level density functional calculations using hybrid functionals are often prohibitively expensive for relevant systems. These expensive periodic calculations can be circumvented by the usage of embedding methods in which for instance the periodic calculation is only performed at a lower-cost level and then monomer energies and dimer interactions are replaced by those of the higher-level method. Herein, we extend upon such a multimer embedding approach to enable energy corrections for trimer interactions and the calculation of harmonic vibrational properties up to the dimer level. We evaluate this approach for the X23 benchmark set of molecular crystals by approximating a periodic hybrid density functional (PBE0+MBD) by embedding multimers into less expensive calculations using a generalized-gradient approximation (GGA) functional (PBE+MBD). We show that trimer interactions are crucial for accurately approximating lattice energies within 1 kJ/mol and might also be needed for further improvement of lattice constants and hence cell volumes. Finally, vibrational properties are already very well captured at the monomer and dimer level, making it possible to approximate vibrational free energies at room temperature within 1 kJ/mol
    corecore