1,871 research outputs found
Thermal Diagnostics with the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory: A Validated Method for Differential Emission Measure Inversions
We present a new method for performing differential emission measure (DEM)
inversions on narrow-band EUV images from the Atmospheric Imaging Assembly
(AIA) onboard the Solar Dynamics Observatory (SDO). The method yields positive
definite DEM solutions by solving a linear program. This method has been
validated against a diverse set of thermal models of varying complexity and
realism. These include (1) idealized gaussian DEM distributions, (2) 3D models
of NOAA Active Region 11158 comprising quasi-steady loop atmospheres in a
non-linear force-free field, and (3) thermodynamic models from a
fully-compressible, 3D MHD simulation of AR corona formation following magnetic
flux emergence. We then present results from the application of the method to
AIA observations of Active Region 11158, comparing the region's thermal
structure on two successive solar rotations. Additionally, we show how the DEM
inversion method can be adapted to simultaneously invert AIA and XRT data, and
how supplementing AIA data with the latter improves the inversion result. The
speed of the method allows for routine production of DEM maps, thus
facilitating science studies that require tracking of the thermal structure of
the solar corona in time and space.Comment: 21 pages, 18 figures, accepted for publication in Ap
Effect of P-glycoprotein on flavopiridol sensitivity
Flavopiridol is the first potent inhibitor of cyclin-dependent kinases (CDKs) to enter clinical trials. Little is known about mechanisms of resistance to this agent. In order to determine whether P-glycoprotein (Pgp) might play a role in flavopiridol resistance, we examined flavopiridol sensitivity in a pair of Chinese hamster ovary cell lines differing with respect to level of Pgp expression. The IC 50 s of flavopiridol in parental AuxB1 (lower Pgp) and colchicine-selected CHRC5 (higher Pgp) cells were 90.2 ± 6.6 nM and 117 ± 2.3 nM, respectively (P< 0.01), suggesting that Pgp might have a modest effect on flavopiridol action. Consistent with this hypothesis, pretreatment with either quinidine or verapamil (inhibitors of Pgp-mediated transport) sensitized CHRC5 cells to the antiproliferative effects of flavopiridol. Because of concern that colony forming assays might not accurately reflect cytotoxicity, we also examined flavopiridol-treated cells by trypan blue staining and flow cytometry. These assays confirmed that flavopiridol was less toxic to cells expressing higher levels of Pgp. Further experiments revealed that flavopiridol inhibited the binding of [3H]-azidopine to Pgp in isolated membrane vesicles, but only at high concentrations. Collectively, these results identify flavopiridol as a weak substrate for Pgp. © 2001 Cancer Research Campaign www.bjcancer.co
Fluctuations of the Magnetization in Thin Films due to Conduction Electrons
A detailed analysis of damping and noise due to a {\it sd}-interaction in a
thin ferromagnetic film sandwiched between two large normal metal layers is
carried out. The magnetization is shown to obey in general a non-local equation
of motion which differs from the the Gilbert equation and is extended to the
non-adiabatic regime. To lowest order in the exchange interaction and in the
limit where the Gilbert equation applies, we show that the damping term is
enhanced due to interfacial effects but it also shows oscillations as a
function of the film thickness. The noise calculation is however carried out to
all orders in the exchange coupling constant. The ellipticity of the precession
of the magnetization is taken into account. The damping is shown to have a
Gilbert form only in the adiabatic limit while the relaxation time becomes
strongly dependent on the geometry of the thin film. It is also shown that the
induced noise characteristic of sd-exchange is inherently colored in character
and depends on the symmetry of the Hamiltonian of the magnetization in the
film. We show that the sd-noise can be represented in terms of an external
stochastic field which is white only in the adiabatic regime. The temperature
is also renormalized by the spin accumulation in the system. For large
intra-atomic exchange interactions, the Gilbert-Brown equation is no longer
valid
Adult judgments of children’s pain and fear during venipuncture: The impact of adult and child sex
Background: Low levels of agreement between caregiver and child reports of acute pain are well documented. Aims: This study builds on prior research through exploring factors that may contribute to low caregiver–child concordance. Specifically, the study examined the influence of adult and child sex on adult judgments of children’s pain and fear during venipuncture and examined whether trait parental pain catastrophizing, empathy, and anxiety predicted judgment accuracy. Methods: Using a judgment study paradigm, 160 participants (82 women) viewed 20 10-s video clips of children (10 boys, 10 girls) undergoing venipuncture and rated each child’s pain and fear. Adults’ ratings were compared to the children’s own ratings. Adults completed measures of trait parental pain catastrophizing, dispositional empathy, and trait anxiety. Results: Adults accurately judged boys’ pain and fear significantly more often than that of girls. Further, adults underestimated and overestimated girls’ pain and overestimated girls’ fear significantly more frequently than that of boys. No effects of adult sex or adult by child sex interactions emerged. Parental pain catastrophizing significantly predicted underestimation of girls’ pain, with adults who engaged in more catastrophizing being less likely to underestimate girls’ pain. The variables did not predict adult judgment of child pain for women and men separately and did not predict adult judgment of child fear when examined by adult sex, child sex, or both combined. Conclusions: Child sex influences adult pain and fear judgments, with girls being more vulnerable to inaccurate assessment than boys. Higher levels of parental pain catastrophizing may buffer against adults’ propensities to underestimate girls’ pain
Detection of hydrodynamic stimuli by the postcranial body of Florida manatees (Trichechus manatus latirostris) A Neuroethology, sensory, neural, and behavioral physiology
Manatees live in shallow, frequently turbid waters. The sensory means by which they navigate in these conditions are unknown. Poor visual acuity, lack of echo- location, and modest chemosensation suggest that other modalities play an important role. Rich innervation of sen- sory hairs that cover the entire body and enlarged soma- tosensory areas of the brain suggest that tactile senses are good candidates. Previous tests of detection of underwater vibratory stimuli indicated that they use passive movement of the hairs to detect particle displacements in the vicinity of a micron or less for frequencies from 10 to 150 Hz. In the current study, hydrodynamic stimuli were created by a sinusoidally oscillating sphere that generated a dipole field at frequencies from 5 to 150 Hz. Go/no-go tests of manatee postcranial mechanoreception of hydrodynamic stimuli indicated excellent sensitivity but about an order of magnitude less than the facial region. When the vibrissae were trimmed, detection thresholds were elevated, suggest- ing that the vibrissae were an important means by which detection occurred. Manatees were also highly accurate in two-choice directional discrimination: greater than 90% correct at all frequencies tested. We hypothesize that mana- tees utilize vibrissae as a three-dimensional array to detect and localize low-frequency hydrodynamic stimul
3D Surface Measurement for Medical Application—Technical Comparison of Two Established Industrial Surface Scanning Systems
In 3D mapping of flexible surfaces (e.g. human faces) measurement errors due to movement or positioning occur. Aggravated by equipment- or researcher-caused mistakes considerable deviations can result. Therefore first the appliances' precision handling and reliability in clinical environment must be established. Aim of this study was to investigate accuracy and precision of two contact-free 3D measurement systems (white light vs. laser). Standard specimens of known diameter for sphere deviation, touch deviation and plane deviation were tested. Both systems are appropriate for medical application acquiring solid data (<mm). The more complex white-light system shows better accuracy at 0.2s measuring time. The laser system is superior concerning robustness, while accuracy is poorer and input time (1.5-2.5s) longer. Due to the clinical demand the white-light system is superior in a laboratory environment, while the laser system is easier to handle under non-laboratory condition
The Evolution of PSR J0737-3039B and a Model for Relativistic Spin Precession
We present the evolution of the radio emission from the 2.8-s pulsar of the
double pulsar system PSR J0737-3039A/B. We provide an update on the Burgay et
al. (2005) analysis by describing the changes in the pulse profile and flux
density over five years of observations, culminating in the B pulsar's radio
disappearance in 2008 March. Over this time, the flux density decreases by
0.177 mJy/yr at the brightest orbital phases and the pulse profile evolves from
a single to a double peak, with a separation rate of 2.6 deg/yr. The pulse
profile changes are most likely caused by relativistic spin precession, but can
not be easily explained with a circular hollow-cone beam as in the model of
Clifton & Weisberg (2008). Relativistic spin precession, coupled with an
elliptical beam, can model the pulse profile evolution well. This particular
beam shape predicts geometrical parameters for the two bright orbital phases
which are consistent and similar to those derived by Breton et al. (2008).
However, the observed decrease in flux over time and B's eventual disappearance
cannot be easily explained by the model and may be due to the changing
influence of A on B.Comment: 20 pages, 18 figures, Accepted by ApJ on 2 August 201
Homologous Helical Jets: Observations by IRIS, SDO and Hinode and Magnetic Modeling with Data-Driven Simulations
We report on observations of recurrent jets by instruments onboard the
Interface Region Imaging Spectrograph (IRIS), Solar Dynamics Observatory (SDO)
and Hinode spacecrafts. Over a 4-hour period on July 21st 2013, recurrent
coronal jets were observed to emanate from NOAA Active Region 11793. FUV
spectra probing plasma at transition region temperatures show evidence of
oppositely directed flows with components reaching Doppler velocities of +/-
100 km/s. Raster Doppler maps using a Si IV transition region line show all
four jets to have helical motion of the same sense. Simultaneous observations
of the region by SDO and Hinode show that the jets emanate from a source region
comprising a pore embedded in the interior of a supergranule. The parasitic
pore has opposite polarity flux compared to the surrounding network field. This
leads to a spine-fan magnetic topology in the coronal field that is amenable to
jet formation. Time-dependent data-driven simulations are used to investigate
the underlying drivers for the jets. These numerical experiments show that the
emergence of current-carrying magnetic field in the vicinity of the pore
supplies the magnetic twist needed for recurrent helical jet formation.Comment: 15 pages, 10 figures, accepted by Ap
Technical Note: Asteroid Detection Demonstration from SkySat-3 - B612 Data Using Synthetic Tracking
We report results from analyzing the data taken by the sCMOS cameras on board of SkySat3 using the synthetic tracking technique. The analysis demonstrates the expected sensitivity improvement in the signal-to-noise ratio of the faint asteroids from properly stacking up the short exposure images in post-processing
Scaling algebras and pointlike fields: A nonperturbative approach to renormalization
We present a method of short-distance analysis in quantum field theory that
does not require choosing a renormalization prescription a priori. We set out
from a local net of algebras with associated pointlike quantum fields. The net
has a naturally defined scaling limit in the sense of Buchholz and Verch; we
investigate the effect of this limit on the pointlike fields. Both for the
fields and their operator product expansions, a well-defined limit procedure
can be established. This can always be interpreted in the usual sense of
multiplicative renormalization, where the renormalization factors are
determined by our analysis. We also consider the limits of symmetry actions. In
particular, for suitable limit states, the group of scaling transformations
induces a dilation symmetry in the limit theory.Comment: minor changes and clarifications; as to appear in Commun. Math.
Phys.; 37 page
- …