25 research outputs found

    River levels derived with CryoSat-2 SAR data classification - A case study in the Mekong River Basin

    Get PDF
    In this study we use CryoSat-2 SAR (delay-Doppler synthetic-aperture radar) data in the Mekong River Basin to estimate water levels. Compared to classical pulse limited radar altimetry, medium- and small-sized inland waters can be observed with CryoSat-2 SAR data with a higher accuracy due to the smaller along track footprint. However, even with this SAR data the estimation of water levels over a medium-sized river (width less than 500 m) is still challenging with only very few consecutive observations over the water. The target identification with land–water masks tends to fail as the river becomes smaller. Therefore, we developed a classification approach to divide the observations into water and land returns based solely on the data. The classification is done with an unsupervised classification algorithm, and it is based on features derived from the SAR and range-integrated power (RIP) waveforms. After the classification, classes representing water and land are identified. Better results are obtained when the Mekong River Basin is divided into different geographical regions: upstream, middle stream, and downstream. The measurements classified as water are used in a next step to estimate water levels for each crossing over a river in the Mekong River network. The resulting water levels are validated and compared to gauge data, Envisat data, and CryoSat-2 water levels derived with a land–water mask. The CryoSat-2 water levels derived with the classification lead to more valid observations with fewer outliers in the upstream region than with a land–water mask (1700 with 2% outliers vs. 1500 with 7% outliers). The median of the annual differences that is used in the validation is in all test regions smaller for the CryoSat-2 classification results than for Envisat or CryoSat-2 land–water mask results (for the entire study area: 0.76 m vs. 0.96 m vs. 0.83 m, respectively). Overall, in the upstream region with small- and medium-sized rivers the classification approach is more effective for deriving reliable water level observations than in the middle stream region with wider rivers

    Validating GIA models based on an ensemble of 3D Earth structures with present-day GPS uplift rates

    Get PDF
    Glacial-isostatic adjustment (GIA) models simulate the viscoelastic response of the solid earth due to loading. During the last glacial maximum, large areas in the northern and southern hemisphere were covered by km-thick ice sheets. Although most of the ice has been melted already 8,000 year ago, the time-delayed response of the viscoelastic earth is still a significant contribution to present-day uplift rates. The implementation of GIA models in global climate models is an essential part of the current research. Hereby, the choice of an appropriate earth structure in the GIA model plays an important role and has to be constrained by observational data. Here, we apply present-day uplift data to constrain a set of GIA models that differ in 3D earth structure. To this end, these different GIA models are validated against GPS uplift rates provided by Schumacher et al. (2019). The GPS stations are globally distributed and not necessarily clustered in regions with strong GIA signal. For validation, regions with the largest gradient present in the GIA signal are most crucial. Thus, we use a weighting scheme, where those GPS stations get a higher weight that are less correlated to all other stations. Additionally, uncertainties in the GPS rates appear due to the length of the GPS time series and due to station specifics such as the used GPS receiver, and are provided together with the rates as standard deviations. Thence, the weighting used for the validation is the sum of the correlation derived weights and the uncertainty derived weights. With this weighting in place, different GIA models can be validated against present day uplift rates by means of root mean square errors or mean absolute error

    Modelling spatial covariances for terrestrial water storage variations verified with synthetic GRACE-FO data

    Get PDF
    Gridded terrestrial water storage (TWS) variations observed by GRACE or GRACE-FO typically show a spatial correlation structure that is both anisotropic (direction-dependent) and non-homogeneous (latitude-dependent). We introduce a new correlation model to represent this structure. This correlation model allows GRACE and GRACE-FO data users to get realistic correlations of the TWS grids without the need to derive them from the formal spherical harmonic uncertainties. Further, we found that the modelled correlations fit the spatial structure of uncertainties to a greater extent in a simulation environment. The model is based on a direction-dependent Bessel function of the first kind which allows to model the longer correlation lengths in the longitudinal direction via a shape parameter, and also to account for residual GRACE striping errors that might remain after spatial filtering. The global scale and shape parameters vary with latitude by means of even Legendre polynomials. The correlation between two points transformed to covariance by scaling with the standard deviations of each point. The covariance model is valid on the sphere which is empirically verified with a Monte-Carlo approach. The covariance model is subsequently applied to 5 years of simulated GRACE-FO data which allow for immediate validation with true uncertainties from the differences between the input mass signal and the recovered gravity fields. Four different realisations of the point standard deviations were tested: two based on the formal errors provided with the simulated Stokes coefficients, and two based on empirical standard deviations, where the first is spatially variant and temporally invariant, and the second spatially invariant and temporally variant. These four different covariance models are applied to compute TWS time series uncertainties for both the fifty largest discharge basins and regular grid cells over the continents. These four models are compared with the true uncertainties available in the simulations. The two empirically-based covariance models provide more realistic TWS uncertainties than the ones based on the formal errors. Especially, the empirically-based covariance models are better in reflecting the spatial pattern of the uncertainties of the simulated GRACE-FO data including their latitude dependence. However, these modelled uncertainties are in general too large. But with only one global scaling factor, a statistical test confirms the equivalence between the empirically-based covariance model with temporally variable point standard deviations and the true uncertainties. Thus at the end, this covariance model represents the closest fit in the simulation environment. The simulated GRACE-FO data are assumed to be very realistic which is why we recommend the new covariance model to be further investigated for the characterisation of real GRACE and GRACE-FO terrestrial water storage data

    Gravitationally Consistent Mean Barystatic Sea Level Rise From Leakage‐Corrected Monthly GRACE Data

    Get PDF
    Gravitationally consistent solutions of the Sea Level Equation from leakage‐corrected monthly‐mean GFZ RL06 Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow‐On (GRACE‐FO) Stokes coefficients reveal that barystatic sea level averaged over the whole global ocean was rising by 1.72 mm a−1 during the period April 2002 until August 2016. This rate refers to a truely global ocean averaging domain that includes all polar and semienclosed seas. The result corresponds to 2.02 mm a−1 mean barystatic sea level rise in the open ocean with a 1,000 km coastal buffer zone as obtained from a direct spatial integration of monthly GRACE data. The bias of +0.3 mm a−1 is caused by below‐average barystatic sea level rise in close proximity to coastal mass losses induced by the smaller gravitational attraction of the remaining continental ice and water masses. Alternative spherical harmonics solutions from CSR, JPL, and TU Graz reveal open‐ocean rates between 1.94 and 2.08 mm a−1, thereby demonstrating that systematic differences among the processing centers are much reduced in the latest release. We introduce in this paper a new method to approximate spatial leakage from the differences of two differently filtered global gravity fields. A globally constant and time‐invariant scale factor required to obtain full leakage from those filter differences is found to be 3.9 for GFZ RL06 when filtered with DDK3, and lies between 3.9 and 4.4 for other processing centers. Spatial leakage is estimated for every month in terms of global grids, thereby providing also valuable information of intrabasin leakage that is potentially relevant for hydrologic and hydrometeorological applications

    ALES+: Adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters

    Get PDF
    Water level from sea ice-covered oceans is particularly challenging to retrieve with satellite radar altimeters due to the different shapes assumed by the returned signal compared with the standard open ocean waveforms. Valid measurements are scarce in large areas of the Arctic and Antarctic Oceans, because sea level can only be estimated in the openings in the sea ice (leads and polynyas). Similar signal-related problems affect also measurements in coastal and inland waters. This study presents a fitting (also called retracking) strategy (ALES+) based on a subwaveform retracker that is able to adapt the fitting of the signal depending on the sea state and on the slope of its trailing edge. The algorithm modifies the existing Adaptive Leading Edge Subwaveform retracker originally designed for coastal waters, and is applied to Envisat and ERS-2 missions. The validation in a test area of the Arctic Ocean demonstrates that the presented strategy is more precise than the dedicated ocean and sea ice retrackers available in the mission products. It decreases the retracking open ocean noise by over 1 cm with respect to the standard ocean retracker and is more precise by over 1 cm with respect to the standard sea ice retracker used for fitting specular echoes. Compared to an existing open ocean altimetry dataset, the presented strategy increases the number of sea level retrievals in the sea ice-covered area and the correlation with a local tide gauge. Further tests against in-situ data show that also the quality of coastal retrievals increases compared to the standard ocean product in the last 6 km within the coast. ALES+ improves the sea level determination at high latitudes and is adapted to fit reflections from any water surface. If used in the open ocean and in the coastal zone, it improves the current official products based on ocean retrackers. First results in the inland waters show that the correlation between water heights from ALES+ and from in-situ measurement is always over 0.95

    Potential of ENVISAT Radar Altimetry for Water Level Monitoring in the Pantanal Wetland

    No full text
    Wetlands are important ecosystems playing an essential role for continental water regulation and the hydrologic cycle. Moreover, they are sensitive to climate changes as well as anthropogenic influences, such as land-use or dams. However, the monitoring of these regions is challenging as they are normally located in remote areas without in situ measurement stations. Radar altimetry provides important measurements for monitoring and analyzing water level variations in wetlands and flooded areas. Using the example of the Pantanal region in South America, this study demonstrates the capability and limitations of ENVISAT radar altimeter for monitoring water levels in inundation areas. By applying an innovative processing method consisting of a rigorous data screening by means of radar echo classification as well as an optimized waveform retracking, water level time series with respect to a global reference and with a temporal resolution of about one month are derived. A comparison between altimetry-derived height variations and six in situ time series reveals accuracies of 30 to 50 cm RMS. The derived water level time series document seasonal height variations of up to 1.5 m amplitude with maximum water levels between January and June. Large scale geographical pattern of water heights are visible within the wetland. However, some regions of the Pantanal show water level variations less than a few decimeter, which is below the accuracies of the method. These areas cannot be reliably monitored by ENVISAT
    corecore